Skip to main content

Advertisement

Log in

A Novel Powder Metallurgy Processing Approach to Prepare Fine-Grained Cu-Al-Ni Shape-Memory Alloy Strips from Elemental Powders

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The current work describes the experimental results related to the successful preparation of fine-grained, Cu-Al-Ni, high-temperature shape-memory alloy (SMA) strips from elemental Cu, Al, and Ni powders via a novel powder metallurgy (P/M) processing approach. This route consists of short time period ball milling of elemental powder mixture, preform preparation from milled powder, sintering of preforms, hot-densification rolling of unsheathed sintered powder preforms under protective atmosphere, and postconsolidation homogenization treatment of the hot-rolled strips. It has been shown that it is possible to prepare chemically homogeneous Cu-Al-Ni SMA strips consisting of equiaxed grains of average size approximately 6 μm via the current processing approach. It also has been shown that fine-grained microstructure in the finished Cu-Al-Ni SMA strips resulted from the pinning effect of nanosized alumina particles present on the grain boundaries. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of \( \beta_{1}^{\prime } \)- and \( \gamma_{1}^{\prime } \)-type martensites. The Cu-Al-Ni SMA strips had 677 MPa average fracture strength, coupled with 13 pct average fracture strain. The fractured surfaces of the specimens exhibited primarily dimpled ductile type of fracture, together with some transgranular mode of fracture. The Cu-Al-Ni strips exhibited an almost 100 pct one-way shape recovery after bending followed by unconstrained heating at 1, 2, and 4 pct applied deformation prestrain. The two-way shape-memory strain was found approximately 0.35 pct after 15 training cycles at 4 pct applied training prestrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. P.K. Kumar and D.C. Lagoudas: Shape Memory AlloysModeling and Engineering Applications, D.C. Lagoudas, ed., Springer Science, New York, NY, 2008.

  2. J.V. Humbeeck and S. Kustove: Smart Mater. Str., 2005, vol. 14, pp. 5171–85.

    Google Scholar 

  3. J.V. Humbeeck: J. Alloys Compd., 2003, vol. 355, pp. 58–64.

    Article  Google Scholar 

  4. Z.C. Lin, W. Yu, R.H. Zee, and B.A. Chin: Intermetallics, 2000, vol. 8, pp. 605–11.

    Article  CAS  Google Scholar 

  5. C.M. Wayman: J. Met., 1990, pp. 129–37.

  6. T. Tadaki: Shape Memory Materials, K. Otsuka and C.M. Wayman, eds., Cambridge University Press, Cambridge, UK, 1998.

  7. J. Font, E. Cesari, J. Muntasell, and J. Pons: Mater. Sci. Eng. A, 2003, vol. 354, pp. 207–11.

    Article  Google Scholar 

  8. L. Delaey: Phase Transformation in Materials, P. Haasen, ed., VCH, Weinheim, Germany, 1991.

  9. S. Miyazaki, K. Otsuka, H. Sakamoto, and K. Shimizu: Trans. Jpn. Inst. Met., 1981, vol. 22, pp. 244–52.

    CAS  Google Scholar 

  10. S.W. Husain and P.C. Clapp: J. Mater. Sci., 1987, vol. 22, pp. 2351–56.

    Article  CAS  Google Scholar 

  11. K. Sugimoto, K. Kamei, H. Matsumoto, S. Komatsu, K. Akamatsu, and T. Sugimoto: J. Phys., 1982, vol. 43, pp. C4-761–66.

  12. G.N. Sure and L.C. Brown: Metall. Trans. A, 1984, vol. 15A, pp. 1613–21.

    CAS  Google Scholar 

  13. J.S. Lee and C.M. Wayman: Trans. Jpn. Inst. Met., 1986, vol. 27, pp. 584–91.

    CAS  Google Scholar 

  14. K. Adachi, K. Shoji, and Y. Hamada: ISIJ Int., 1989, vol. 29, pp. 378–87.

    Article  CAS  Google Scholar 

  15. J.W. Kim, D.W. Roh, E.S. Lee, and Y.G. Kim: Metall. Trans. A, 1990, vol. 21A, pp. 741–74.

    CAS  Google Scholar 

  16. D.W. Roh, J.W. Kim, T.J. Cho, and Y.G. Kim: Mater. Sci. Eng. A, 1991, vol. A136, pp. 12–23.

    Google Scholar 

  17. M.A. Morris: Acta Metall. Mater., 1992, vol. 40, pp. 1573–86.

    Article  CAS  Google Scholar 

  18. S. Bhattacharya, A. Bhuniya, and M.K. Banerjee: Mater. Sci. Technol., 1993, vol. 9, pp. 654–58.

    Article  CAS  Google Scholar 

  19. Y. Gao, M. Zhu, and J.K.L. Lai: J. Mater. Sci., 1998, vol. 33, pp. 3579–84.

    Article  CAS  Google Scholar 

  20. T.W. Duerig, J. Albert, and G.H. Gessinger: J. Met., 1982, pp. 14–20.

  21. R.D. Jean, T.Y. Wu, and S.S. Leu: Scripta Metall. Mater., 1991, vol. 25, pp. 883–88.

    Article  CAS  Google Scholar 

  22. S.S. Leu, Y. Chen, and R.D. Jean: J. Mater. Sci., 1992, vol. 27, pp. 2792–98.

    Article  CAS  Google Scholar 

  23. R.B. Parez-Saez, V. Recarte, M.L. No, O.A. Ruano, and J. San Juan: Adv. Eng. Mater., 2000, vol. 2, pp. 49–53.

    Article  Google Scholar 

  24. S.K. Vajpai, R.K. Dube, and S. Sangal: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3178–89.

    Article  Google Scholar 

  25. S.K. Vajpai, R.K. Dube, and S. Sangal: Mater. Sci. Eng. A, 2011, vol. 529A, pp. 378–87.

    Google Scholar 

  26. S.M. Tang, C.Y. Chung, and W.G. Liu: J. Mater. Process. Technol., 1997, vol. 63, pp. 307–12.

    Article  Google Scholar 

  27. Z. Li, Z.Y. Pan, N. Tang, Y.B. Ziang, N. Liu, M. Fang, and M. Zheng: Mater. Sci. Eng. A, 2006, vol. 417, pp. 225–29.

    Article  Google Scholar 

  28. M. Sharma, S.K. Vajpai, and R.K. Dube: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2905–13.

    Article  CAS  Google Scholar 

  29. M. Sharma, S.K. Vajpai, and R.K. Dube: Powder Metall., 2011, vol. 54, pp. 620–27.

    Article  CAS  Google Scholar 

  30. S.K. Vajpai, R.K. Dube, and M. Sharma: J. Mater. Sci., 2009, vol. 44, pp. 4334–41.

    Article  CAS  Google Scholar 

  31. P.R. Swann and H. Warlimont: Acta Metall., 1963, vol. 11, pp. 511–27.

    Article  Google Scholar 

  32. V. Recarte, R.B. Perez-Saez, E.H. Bocanegra, M.L. No, and J. San Juan: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2581–91.

    Article  CAS  Google Scholar 

  33. S. Miyazaki, T. Kawai, and K. Otsuka: Scripta Metall., 1982, vol. 16, pp. 431–36.

    CAS  Google Scholar 

  34. K. Mukunthan and L.C. Brown: Metall. Trans. A, 1988, vol. 19A, pp. 2921–29.

    CAS  Google Scholar 

  35. L. Delaey, R.V. Krishnan, H. Tas, and H. Warlimont: J. Mater. Sci., 1974, vol. 9, pp. 1521–35.

    Article  CAS  Google Scholar 

  36. M. Piao, K. Otsuka, S. Miyazaki, and H. Horikawa: Mater. Trans. JIM, 1993, vol. 34, pp. 919–29.

    CAS  Google Scholar 

  37. K. Otsuka and X. Ren: Progr. Mater. Sci., 2005, vol. 50, pp. 511–678.

    Article  CAS  Google Scholar 

  38. Y. Zheng, L. Cui, F. Zhang, and D. Yang: J. Mater. Sci. Technol., 2000, vol. 16, pp. 611–14.

    CAS  Google Scholar 

  39. F. Chen, Y.X. Tong, B. Tian, L. Li, and Y.F. Zheng: Mater. Lett., 2010, vol. 64, pp. 1879–82.

    Article  CAS  Google Scholar 

  40. S.P. Belyaev, N.N. Resnina, and A.E. Volkov: Mater. Sci. Eng. A, 2006, vols. 438–40, pp. 627–29.

    Google Scholar 

  41. R. Lahoz, L. Gracia-Villa, and J.A. Puertolas: J. Eng. Mater. Technol., 2002, vol. 124, pp. 397–401.

    Article  CAS  Google Scholar 

  42. H.W. Kim: J. Mater. Sci., 2005, vol. 40, pp. 211–12.

    Article  CAS  Google Scholar 

  43. X.L. Meng, Y.F. Zheng, W. Cai, and L.C. Zhao: J. Alloy Compd., 2004, vol. 372, pp. 180–86.

    Article  CAS  Google Scholar 

  44. L. Wang, X. Meng, W. Cai, and L. Zhao: J. Mater. Sci. Technol., 2001, vol. 17, pp. 13–14.

    CAS  Google Scholar 

  45. H. Sakamoto, K. Sugimoto, Y. Nakamura, A. Tanaka, and K. Shimizu: Mater. Trans. JIM, 1991, vol. 32, pp. 128–34.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. K. Mondal, Department of Materials and Metallurgical Engineering, Indian Institute of Technology, Kanpur, India, for providing the differential scanning calorimetry facility used in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Vajpai.

Additional information

Manuscript submitted September 13, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vajpai, S.K., Dube, R.K., Chatterjee, P. et al. A Novel Powder Metallurgy Processing Approach to Prepare Fine-Grained Cu-Al-Ni Shape-Memory Alloy Strips from Elemental Powders. Metall Mater Trans A 43, 2484–2499 (2012). https://doi.org/10.1007/s11661-012-1081-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1081-0

Keywords

Navigation