Skip to main content

Advertisement

Log in

Hydrogen Effects in Prestrained Transformation Induced Plasticity Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermal desorption analysis (TDA) was performed on laboratory heat-treated transformation induced plasticity (TRIP) steel with 14.5 pct retained austenite (RA), ultimate tensile strength (UTS) of 880 MPa, and elongation to failure of 33 pct. Samples were tensile prestrained 5 pct at 253 K (–20 °C), 296 K (23 °C), and 375 K (102 °C) to generate different amounts of deformation-induced martensite, 10.5, 5.5, and 0.5 pct, respectively, prior to cathodically charging to a hydrogen content of 1 to 2 ppm. TDA was performed on charged samples to determine the location and strength of hydrogen trapping sites. TDA results suggest that dislocations were the main trapping sites in prestrained TRIP steel. The TDA peak intensity increased with prestrain, suggesting that the quantity of hydrogen trap sites increased with deformation. Tensile tests were performed on the four hydrogen-charged TRIP steel conditions. As confirmed with transmission electron microscope images, samples with more homogeneous dislocation distributions (i.e., prestrained at 375 K (102 °C)) exhibited greater resistance to hydrogen embrittlement than samples that included a high dislocation density adjacent to the formations of strain-induced martensite (i.e., samples prestrained at 253 K (–20 °C) and 296 K (23 °C)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

  2. VICI® is a registered trademark of Valco Instruments Co. Inc. and VICI AG, Houston, TX.

References

  1. J. Hirth: Metall. Mater. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  2. T.P. Perng and C.J. Altstetter: Mater. Sci. Eng. A, 1990, vol. 129, pp. 99–107.

    Article  Google Scholar 

  3. A. Turnbull and R.B. Hutchings: Mater. Sci. Eng. A, 1994, vol. 177, pp. 161–71.

    Article  CAS  Google Scholar 

  4. I. Maroef, D.L. Olson, M. Eberhart, and G.R. Edwards: Int. Mater. Rev., 2001, vol. 47, pp. 191–223.

    Article  Google Scholar 

  5. J.A. Ronevich, J.G. Speer, and D.K. Matlock: SAE Int. J. Mater. Manufact., 2010, vol. 3, pp. 255–67.

    Google Scholar 

  6. W. Choo and J. Lee: Metall. Trans. A, 1983, vol. 14A, pp. 1299–305.

    CAS  Google Scholar 

  7. W. Choo and J. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135–40.

    CAS  Google Scholar 

  8. F. Wei, T. Hara, and K. Tsuzaki: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 587–97.

    Article  CAS  Google Scholar 

  9. Y. Park, I.S. Maroef, A. Landau, and D.L. Olson: Weld. J., 2002, vol. 81, pp. 27–35.

    Google Scholar 

  10. C.M. Sturges and A.P. Miodownik: Acta Metall., 1969, vol. 17, pp. 1197–1207.

    Article  CAS  Google Scholar 

  11. D. Escobar, L. Duprez, K. Verbeken, and M. Verhaege: Proc. 2008 Int. Hydrogen Conf., Jackson Hole, WY, 2008, ASM International, Materials Park, OH, pp. 485–92.

  12. L. Samek, E. De Moor, J. Penning, and B. De Cooman: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 109–24.

    Article  CAS  Google Scholar 

  13. P.J. Jacques: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 259–65.

    Article  CAS  Google Scholar 

  14. A.M. Streicher, J.G. Speer, D.K. Matlock, and B.C. De Cooman: Proc. Int. Conf. on Advanced High-Strength Sheet Steels for Automotive Applications, J.G. Speer, ed., AIST, Warrendale, PA, 2004, pp. 51–62.

  15. D. Escobar, K. Verbeken, L. Duprez, and M. Verhaege: Proc 2008 Int. Hydrogen Conf., Jackson Hole, WY, 2008, ASM International, Materials Park, OH, pp. 477–84.

  16. H.E. Kissinger: Anal. Chem., 1957, vol. 29, pp. 1702–06.

    Article  CAS  Google Scholar 

  17. F. Wei and K. Tsuzaki: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 331–53.

    Article  CAS  Google Scholar 

  18. S.F. Peterson, M.C. Mataya, and D.K. Matlock: JOM, 1997, vol. 49, pp. 54–58.

    Article  CAS  Google Scholar 

  19. R.G. Davies: Scripta Metall., 1983, vol. 17, pp. 889–92.

    Article  CAS  Google Scholar 

  20. G. Krauss: Steels: Processing, Structure and Performance, ASM INTERNATIONAL, Materials Park, OH, 2005.

    Google Scholar 

  21. T.B. Hilditch, S.B. Lee, J.G. Speer, and D.K. Matlock: SAE Technical Publication 2003-01-0525, SAE, Warrendale, PA, 2003.

    Google Scholar 

  22. A. Turnbull, R.B. Hutchings, and D.H. Ferriss: Mater. Sci. Eng. A, 1997, vol. 238, pp. 317–28.

    Article  Google Scholar 

  23. E. Dabah, V. Lisitsyn, and D. Eliezer: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4851–57.

    Article  Google Scholar 

  24. Y. Park, I.S. Maroef, A. Landau, and D.L. Olson: Weld. J., 2002, pp. 27–35.

  25. H.K.D.H. Bhadeshia: Bainite in Steels, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 2001.

    Google Scholar 

  26. A. Nagao, K. Hayashi, K. Oi, and S. Mitao: Proc. Int. Symp. on the Recent Developments in Plate Steels, Winter Park, CO, 2011, pp. 159–67.

  27. G. Pressouyre: Metall. Trans. A, 1979, vol. 10A, pp. 1571–73.

    CAS  Google Scholar 

Download references

Acknowledgments

Part of this work was performed by one of the authors (JR) at the Graduate Institute of Ferrous Technology (GIFT), Pohang Institute of Science and Technology, University in Pohang, and the authors thank GIFT for their support. This work was partially supported by the IMI Program of the National Science Foundation under Award No. DMR 0843934. The authors are also grateful for the support of the Advanced Steel Processing and Products Research Center, an industry/university cooperative research center at the Colorado School of Mines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Ronevich.

Additional information

Manuscript submitted June 20, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronevich, J.A., De Cooman, B.C., Speer, J.G. et al. Hydrogen Effects in Prestrained Transformation Induced Plasticity Steel. Metall Mater Trans A 43, 2293–2301 (2012). https://doi.org/10.1007/s11661-011-1075-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1075-3

Keywords

Navigation