Skip to main content

Advertisement

Log in

Microstructural and Orientation Dependence of the Plastic Deformation Behavior in β-type Ti-15Mo-5Zr-3Al Alloy Single Crystals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstarct

The plastic deformation behavior of a β-type Ti-15Mo-5Zr-3Al alloy with a body-centered cubic (bcc) structure, which is a promising material for biomedical applications, was investigated. The orientation dependence of the plastic deformation behavior was examined by using a single crystal. In addition, changes in the mechanical properties depending on the microstructure were examined. The β single phase was maintained even after short-time annealing below 673 K (400 °C). Thus, the variations in the mechanical properties were small. However, an ellipsoidal ω phase and a lath-like α phase were precipitated in long-time annealing at 573 K (300 °C) and 673 K (400 °C), leading to large increases in the yield stress. For the deformation behavior, a dislocation with a Burgers vector parallel to \( \left\langle {111} \right\rangle \) was observed irrespective of the heat-treatment conditions and loading orientations. However, the observed slip plane changed considerably depending on the loading axis, and the yield stress exhibited a strong orientation dependence because of the dislocation core structure effect in the bcc-structured crystals. The physical properties of Mo, which is the main constituent atom in the current alloy, may strongly affect the dislocation core structure and induce the characteristic orientation dependence of the plastic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro: Mater. Sci. Eng. A, 1998, vol. 243, pp. 244–29.

    Article  Google Scholar 

  2. M. Niinomi: Biomaterials, 2003, vol. 24, pp. 2673–83.

    Article  CAS  Google Scholar 

  3. T. Inamura, H. Hosoda, K. Wakashima, and S. Miyazaki: Mater. Trans., 2005, vol. 46, pp. 1597–1603.

    Article  CAS  Google Scholar 

  4. H. Matsumoto, S. Watanabe, and S. Hanada: Mater. Trans., 2005, vol. 46, pp. 1070–78.

    Article  CAS  Google Scholar 

  5. Y. Okazaki, Y. Ito, K. Kyo, and T. Tateishi: Mater. Sci. Eng. A, 1996, vol. 213, pp. 138–47.

    Article  Google Scholar 

  6. H-M Kim, H. Takadama, T. Kokubo, S. Nishiguchi, and T. Nakamura: Biomaterials, 2000, vol. 21, pp. 353–58.

    Article  CAS  Google Scholar 

  7. T. Nakano, K. Hagihara, H. Maki, Y. Umakoshi, and M. Niinomi: Ti-2007 Science and Technology: Proc. of the 11th World Conf. on Titanium, The Japan Institute of Metal, Sendai, Japan, 2007, pp. 1437–39.

  8. M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, M. Niinomi, and H. Nakajima: Acta Mater., 2008, vol. 56, pp. 2856–63.

    Article  CAS  Google Scholar 

  9. M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, M. Niinomi, H. Mori, and H. Nakajima: Acta Mater., 2010, vol. 58, pp. 6790–98.

    Article  CAS  Google Scholar 

  10. V.B. Rao and C.R. Houska: Metall. Trans. A, 1979, vol. 10, pp. 355–58.

    Article  Google Scholar 

  11. K. Tokaji, H. Shiota, and J.C. Bian: Mater. Sci. Eng. A, 1998, vol. 243, pp. 155–62.

    Article  Google Scholar 

  12. S. Hanada and O. Izumi: Trans. Jpn. Inst. Metals, 1980, vol. 21, pp. 201–10.

    CAS  Google Scholar 

  13. S. Hanada and O. Izumi: Trans. Jpn. Inst. Metals, 1982, vol. 23, pp. 85–94.

    CAS  Google Scholar 

  14. S. Komatsu, M. Ikeda, T. Sugimoto, K. Kamei, O. Maesaki, and M. Kojima: Mater. Sci. Eng. A, 1996, vol. 213, pp. 61–65.

    Article  Google Scholar 

  15. S-H. Lee, K. Hagihara, M-H. Oh, and T. Nakano: J. Phys.: Conf. Series, 2009, vol. 165, pp. 012086 1–6 4.

    Google Scholar 

  16. S. Hanada, M. Ozeki, and O. Izumi: Metall. Trans. A, 1985, vol. 16A, pp. 789–95.

    CAS  Google Scholar 

  17. S. Hanada, A. Takemura, and O. Izumi: Trans. Jpn. Inst. Metals, 1982, vol. 23, pp. 507–17.

    CAS  Google Scholar 

  18. S. Hanada and O. Izumi: Metall. Trans. A, 1980, vol. 11A, pp. 1447–52.

    CAS  Google Scholar 

  19. S. Hanada and O. Izumi: Titanium 80’, Science and Technology: Proc. of the Fourth International Conference on Titanium, TSM-AIME, 1980, pp. 691–97.

  20. J.C Williams, B.S. Hickman, and D.H. Leslie: Metall. Trans., 1971, vol. 2, pp. 477–84.

    Article  CAS  Google Scholar 

  21. K. Hagihara, T. Tachibana, K. Sasaki, Y. Yoshida, N. Shirakawa, T. Nagasawa, T. Narushima, and T. Nakano: Mater. Trans., 2009, vol. 50, pp. 2709–15.

    Article  CAS  Google Scholar 

  22. T. Nakano, Y. Nakai, S. Maeda, and Y. Umakoshi: Acta Mater., 2002, vol. 50, pp. 1781–95.

    Article  CAS  Google Scholar 

  23. H. Ohyama and T. Nishimura: ISIJ Int., 1995, vol. 35, pp. 927–36.

    Article  CAS  Google Scholar 

  24. V.S. Litvinov and G.M. Rusakov: Phys. Metals Metall., 2000, vol. 90, pp. S96–107.

    Google Scholar 

  25. M. Hida, E Sukedai, C. Henmi, K. Sakaue, and H. Terauchi: Acta Metall., 1982, vol. 30, pp. 1471–79.

    Article  CAS  Google Scholar 

  26. S. Hanada, T. Yoshio, and O. Izumi: Trans. Jpn. Inst. Metals, 1986, vol. 27, pp. 496–503.

    CAS  Google Scholar 

  27. M.S. Duesbery and V. Vitek: Acta Mater., 1998, vol. 46, pp. 1481–92.

    Article  CAS  Google Scholar 

  28. M. Ikeda, S. Komatsu, T. Sugimoto, and K. Kamei: J. Jpn. Inst. Light Met., 1994, vol. 44, pp. 35–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the projects “Funding Program for Next Generation World-Leading Researchers” of the Japan Society for the Promotion of Science. This work was also supported by the “Priority Assistance of the Formation of Worldwide Renowned Centers of Research–The 21st Century COE Program and Global COE Program (Project: Center of Excellence for Advanced Structural and Functional Materials Design)” and by a Grant-in-Aid for Scientific Research and Development from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayoshi Nakano.

Additional information

Manuscript submitted June 22, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SH., Hagihara, K. & Nakano, T. Microstructural and Orientation Dependence of the Plastic Deformation Behavior in β-type Ti-15Mo-5Zr-3Al Alloy Single Crystals. Metall Mater Trans A 43, 1588–1597 (2012). https://doi.org/10.1007/s11661-011-0986-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0986-3

Keywords

Navigation