Skip to main content

Advertisement

Log in

In Situ Neutron-Diffraction Studies on the Creep Behavior of a Ferritic Superalloy

  • Symposium: Neutron and X-Ray Studies of Advanced Materials IV
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Precipitate strengthening effects toward the improved creep behavior have been investigated in a ferritic superalloy with B2-type (Ni,Fe)Al precipitates. In situ neutron diffraction has been employed to study the evolution of the average phase strains, (hkl) plane-specific lattice strains, interphase lattice misfit, and grain-orientation texture during creep deformation of the ferritic superalloy at 973 K (700 °C). The creep mechanisms and particle-dislocation interactions have been studied from the macroscopic creep behavior. At a low stress level of 107 MPa, the dislocation-climb-controlled power-law creep is dominant in the matrix phase, and the load partition between the matrix and the precipitate phases remains constant. However, intergranular stresses develop progressively during the primary creep regime with the load transferred to 200 and 310 oriented grains along the axial loading direction. At a high stress level of 150 MPa, deformation is governed by the thermally activated dislocation glide (power-law breakdown) accompanied by the accelerated texture evolution. Furthermore, an increase in stress level also leads to load transfer from the plastically deformed matrix to the elastically deformed precipitates in the axial direction, along with an increase in the lattice misfit between the matrix and the precipitate phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Stallybrass and G. Sauthoff: Mater. Sci. Eng. A, 2004, vol. 387, pp. 985-90.

    Article  Google Scholar 

  2. C. Stallybrass, A. Schneider, and G. Sauthoff: Intermetallics, 2005, vol. 13, pp. 1263-68.

    Article  CAS  Google Scholar 

  3. Z.K. Teng, C.T. Liu, G. Ghosh, P.K. Liaw, and M.E. Fine: Intermetallics, 2010, vol. 18, pp. 1437-43.

    Article  CAS  Google Scholar 

  4. Z.K. Teng, M.K. Miller, G. Ghosh, C.T. Liu, S. Huang, K.F. Russell, M.E. Fine, and P. K. Liaw: Scripta Mater., 2010, vol. 63, pp. 61-64.

    Article  CAS  Google Scholar 

  5. S.M. Zhu, S.C. Tjong, and J.K.L. Lai: Acta Mater., 1998, vol. 46, pp. 2969-76.

    Article  CAS  Google Scholar 

  6. H. Bhadeshia: ISIJ Int., 2001, vol. 41, pp. 626-40.

    Article  CAS  Google Scholar 

  7. M.B. Ruggles, S. Cheng, and E. Krempl: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 1994, vol. 186, pp. 15-21.

    Article  CAS  Google Scholar 

  8. H. Magnusson and R. Sandstrom: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2009, vol. 527, pp. 118-25.

    Article  Google Scholar 

  9. D.B. Miracle: Acta Metall. Mater., 1993, vol. 41, pp. 649-84.

    Article  CAS  Google Scholar 

  10. M.R. Daymond, M. Preuss, and B. Clausen: Acta Mater., 2007, vol. 55, pp. 3089-3102.

    Article  CAS  Google Scholar 

  11. S. Ma, V. Seetharaman, and B.S. Majumdar: Acta Mater., 2008, vol. 56, pp. 4102-13.

    Article  CAS  Google Scholar 

  12. S. Ma, D. Brown, M.A.M. Bourke, M.R. Daymond, and B.S. Majurndar: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2005, vol. 399, pp. 141-53.

    Article  Google Scholar 

  13. M. Fukuhara and A. Sanpei: ISIJ Int., 1993, vol. 33, pp. 508-12.

    Article  CAS  Google Scholar 

  14. A.C. Larson and R.B. Von Dreele: GSAS-General Structure Analysis System, p. 143.

  15. M.R. Daymond, M.A.M. Bourke, R.B. VonDreele, B. Clausen, and T. Lorentzen: J. Appl. Phys., 1997, vol. 82, pp. 1554-62.

    Article  CAS  Google Scholar 

  16. H.J. Stone, T.M. Holden, and R.C. Reed: Acta Mater., 1999, vol. 47, pp. 4435-48.

    Article  CAS  Google Scholar 

  17. S.C. Tjong and Z.Y. Ma: Mater. Lett., 2002, vol. 56, pp. 59-64.

    Article  CAS  Google Scholar 

  18. G. Ghosh and G.B. Olson: Acta Mater., 2002, vol. 50, pp. 2655-75.

    Article  CAS  Google Scholar 

  19. H.M.A. Winand, A.F. Whitehouse, and P.J. Withers: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2000, vol. 284, pp. 103-13.

    Article  Google Scholar 

  20. W. Gale and T. Totemeier: Smithells Metals Reference Book, 8th ed., Elsevier, Atlanta, GA, 2004.

  21. H. Calderon and M.E. Fine: Mater. Sci. Eng., 1984, vol. 63, pp. 197-208.

    Article  CAS  Google Scholar 

  22. H.A. Calderon, M.E. Fine, and J.R. Weertman: Metall. Trans. A, 1988, vol. 19A, pp. 1135-46.

    CAS  Google Scholar 

  23. R. Taillard, A. Pineau, and B.J. Thomas: Mater. Sci. Eng., 1982, vol. 54, pp. 209-19.

    Article  CAS  Google Scholar 

  24. H. Choo, D. Seo, J. Beddoes, M.A.M. Bourke, and D.W. Brown: Appl. Phys. Lett., 2004, vol. 85, pp. 4654-56.

    Article  CAS  Google Scholar 

  25. M.R. Daymond and H.G. Priesmeyer: Acta Mater., 2002, vol. 50, pp. 1613-26.

    Article  CAS  Google Scholar 

  26. E.C. Oliver, M.R. Daymond, and P. J. Withers: Acta Mater., 2004, vol. 52, pp. 1937-51.

    Article  CAS  Google Scholar 

  27. Y. Tomota, P. Lukas, S. Harjo, J.H. Park, N. Tsuchida, and D. Neov: Acta Mater., 2003, vol. 51, pp. 819-30.

    Article  CAS  Google Scholar 

  28. M.T. Hutchings, P.J. Withers, T.M. Holden, and T. Lorentzen: Introduction to the Characterization of Residual Stress by Neutron Diffraction, 1st ed., CRC Press, Boca Raton, FL, 2005, p. 161.

    Google Scholar 

  29. S.J. Lewis and C.E. Truman: J. Phys. D-Appl. Phys., 2010, vol. 43, p. 265501.

    Article  Google Scholar 

  30. O. Engler and V. Randle: Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, 2nd ed., CRC Press, Boca Raton, FL, p. 153.

  31. W.F. Hosford: The Mechanics of Crystals and Textured Polycrystals, 20th ed., Oxford University Press, New York, NY, pp. 36–42.

  32. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps: the Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, UK, 1982.

  33. A.S. Argon: Physical Metallurgy, Eds. Robert W. Cahn and Peter Haasen, 4th ed., Elsevier, Atlanta, GA, p. 1999.

  34. F. Groisbock: J. Mater. Sci., 1992, vol. 27, pp. 4373-80.

    Article  Google Scholar 

  35. F. Groisbock and R. Ebner: Z. Metallk., 1991, vol. 82, pp. 435-41.

    CAS  Google Scholar 

  36. J.W. Martin: Micromechanisms in Particle-Hardened Alloys, Cambridge University Press, Cambridge, UK, p. 43.

  37. M.E. Kassner: Fundamentals of Creep in Metals and Alloys, 1st ed., Elsevier, Atlanta, GA, pp. 151–69.

  38. A.J. Allen, M.A.M. Bourke, S. Dawes, M.T. Hutchings, and P.J. Withers: Acta Metall. Mater., 1992, vol. 40, pp. 2361-73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the U.S. Department of Energy (DOE), Office of Fossil Energy, under Grants DE-FG26-06NT42732 and DE-09NT0008089. The work has benefitted from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences (DOE). Los Alamos National Laboratory is operated by the Los Alamos National Security LLC under the DOE Contract DE-AC52-06NA-25396. The authors would like to thank Prof. Morris Fine, Prof. Gautam Ghosh at Northwestern University, Prof. Mark Asta at University of California, Berkeley, and Prof. Chain T. Liu at the City University of Hong Kong for their collaborations in this program. Note that the TEM work was published in Ref. [4] and was conducted by Prof. Gautam Ghosh. Y.F. Gao acknowledges support from the Center for Defect Physics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Liaw.

Additional information

Manuscript submitted March 15, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Brown, D.W., Clausen, B. et al. In Situ Neutron-Diffraction Studies on the Creep Behavior of a Ferritic Superalloy. Metall Mater Trans A 43, 1497–1508 (2012). https://doi.org/10.1007/s11661-011-0979-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0979-2

Keywords

Navigation