Skip to main content
Log in

Phase Selection and Microstructure Evolution in Nonequilibrium Solidification of Fe40Ni40B20 Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Phase selection and microstructure evolution in nonequilibrium solidification of ternary eutectic Fe40Ni40B20 alloy have been studied. It is shown that γ-(Fe, Ni) and (Fe, Ni)3B prevail in all the as-solidified samples. No metastable phase has been found in the deeply undercooled samples. This is explained as resulting from the size effect of undercooled solidification. At small and medium undercoolings, the dendrite γ-(Fe, Ni) appears as the leading phase. This is ascribed to the existence of the skewed coupled growth zone in FeNiB alloy. With increasing undercooling, the amount of dendrites first increases and then decreases, accompanied by a transition from regular eutectic to anomalous eutectic. The formation mechanisms of the anomalous eutectics are discussed. Two kinds of microstructure refinement are found with increasing undercooling in a natural or water cooling condition. However, for melts with the same undercooling, the as-solidified microstructure refines first, and then coarsens with an increasing cooling rate. The experimental results show that the nanostructure eutectic cell has been obtained in the case of Ga-In alloy bath cooling with an initial melt undercooling of approximately 50 K (50 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.M. Herlach: Mater. Sci. Eng. R, 1994, vol. 12, pp. 177–272.

    Article  Google Scholar 

  2. F. Liu and G.C. Yang: Inter. Mater. Rev., 2006, vol. 51, pp. 145–70.

    Article  CAS  Google Scholar 

  3. C.L. Yang, F. Liu, G.C. Yang, Y.Z. Chen, N. Liu, and Y.H. Zhou: J. Alloy. Compd., 2007, vol. 441, pp. 101–06.

    Article  CAS  Google Scholar 

  4. A.L. Greer: Mater. Sci. Eng. A, 1991, vol. 133A, pp. 16–21.

    Google Scholar 

  5. M. Schwarz, A. Karma, K. Eckler, and D.M. Herlach: Phys. Rev. Lett., 1994, vol. 73, pp. 1380–83.

    Article  CAS  Google Scholar 

  6. F.E. Luborsky, J.L. Walter, and H.H. Liebermann: IEEE Trans. Magn., 1979, vol. 15, pp. 909–11.

    Article  Google Scholar 

  7. U. Köster, U. Herold, and H.G. Hillenbrand: Scripta Metall., 1983, vol. 17, pp. 867–72.

    Article  Google Scholar 

  8. C.T. Chang, B.L. Shen, and A. Inoue: Appl. Phys. Lett., 2006, vol. 89, pp. 051912–13.

    Article  Google Scholar 

  9. S. Vitta, C.S. Proctor, R.F. Cochrane, and A.L. Greer: Mater. Sci. Eng. A, 1991, vol. 133A, pp. 799–802.

    Google Scholar 

  10. W. Kurz and R. Trivedi: Acta Metall., 1990, vol. 38, pp. 1–17.

    Article  CAS  Google Scholar 

  11. J.W. Christian: The Theory of Transformation in Metals and Alloys, 3rd ed., Pergamon Press, Oxford, UK, 2002, pp. 422–79.

    Book  Google Scholar 

  12. V. Raghavan: J. Phase Equilib. Diff., 2007, vol. 28, pp. 377–79.

    Article  CAS  Google Scholar 

  13. W. Kurz and D.J. Fisher: Inter. Metals Rev., 1979, vols. 5–6, pp. 177–204.

    Article  Google Scholar 

  14. A. Hellawell: Progr. Mater. Sci., 1970, vol. 15, pp. 1–78.

    Article  Google Scholar 

  15. T.J. Piccone, Y. Wu, Y. Shiohara, and M.C. Flemings: Metall. Trans. A, 1987, vol. 18A, pp. 925–32.

    CAS  Google Scholar 

  16. W. Yang, F. Liu, H.F. Wang, Z. Chen, G.C. Yang, and Y.H. Zhou: J. Alloy. Compd., 2009, vol. 470, pp. L13–16.

    Article  CAS  Google Scholar 

  17. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 3rd ed., Trans. Tech. Publications Ltd., Zurich, Switzerland, 1992, pp. 5–11.

    Google Scholar 

  18. N. Liu, F. Liu, G.C. Yang, Y.Z. Chen, C.L. Yang, J.S. Li, and Y.H. Zhou: J. Alloy. Compd., 2007, vol. 455, pp. L6–9.

    Article  Google Scholar 

  19. J.F. Li, Y.C. Liu, Y.L. Lu, G.C. Yang, and Y.H. Zhou: J. Cryst. Growth, 1998, vol. 192, pp. 462–70.

    Article  CAS  Google Scholar 

  20. T. Zhang, F. Liu, H.F. Wang, and G.C. Yang: Scripta Mater., 2010, vol. 63, pp. 43–46.

    Article  CAS  Google Scholar 

  21. T.Z. Kattamis and M.C. Flemings: Metall. Trans., 1970, vol. 1, pp. 1449–51.

    CAS  Google Scholar 

  22. J.F. Li, W.Q. Jie, G.C. Yang, and Y.H. Zhou: Acta Mater., 2002, vol. 50, pp. 1797–1807.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Free Research Fund of State Key Lab of Solidification Processing (09-QZ-2008 and 24-TZ-2009), the 111 project (B08040), the Natural Science Foundation of China (Grant No. 51071127, 50901059), the Huo Yingdong Young Teacher Fund (111502), the Fundamental Research Fund of Northwestern Polytechnical University (JC200801), and the National Basic Research Program of China (973 Program) 2011CB610403.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Additional information

Manuscript submitted May 12, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Liu, F., Xu, JF. et al. Phase Selection and Microstructure Evolution in Nonequilibrium Solidification of Fe40Ni40B20 Alloy. Metall Mater Trans A 43, 1578–1587 (2012). https://doi.org/10.1007/s11661-011-0976-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0976-5

Keywords

Navigation