Skip to main content
Log in

Origin of Microstructural Irreversibility in Ni-Ti Based Shape Memory Alloys during Thermal Cycling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Different microstructures of Ni-Ti- and Ni-Ti-Fe-based shape memory alloys were subjected to thermal cycling: dipping in liquid nitrogen, for approximately 5 minutes, and then bringing it back to room temperature or austenite (cubic: B2) ↔ martensite (monoclinic: B19′) reversible solid-state phase transformation. Direct electron backscattered diffraction (EBSD) observations could bring out aspects of microstructural irreversibilities: namely, changes in grain size, misorientation buildup, and presence of retained martensite. The average changes in grain size (Δd) differed by almost 2 to 4 times between different microstructures. The highest Δd was typically observed in structures having maximum clustering of fine (d < 5 μm) grains. The sample with highest Δd was also subjected to multiple thermal cycling. Although Δd scaled linearly with d after the first thermal cycle, the scatter increased during subsequent thermal cycles. Grain or orientations deviating from the linear behavior were clearly anisotropic crystallographically. With repeated thermal cycling, the patterns of changes in Δd, austenite misorientation, and retained martensite content were similar. A phenomenological model or hypothesis, based on 40 deg \( \left\langle {001} \right\rangle \) orientation relationship between austenite and martensite phases, was proposed to address the observed patterns of microstructural irreversibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

References

  1. W.A. Rachikger: J. Appl. Phys., 1958, vol. 9, pp. 250–52.

    Google Scholar 

  2. W.J. Buehler, J.V. Gilfrich, and R.C. Wiley: J. Appl. Phys., 1963, vol. 34, pp. 1475–77.

    Article  CAS  Google Scholar 

  3. F.E. Wang, W.J. Buehler, and S.J. Pickart: J. Appl. Phys., 1965, vol. 36, pp. 3232–39.

    Article  CAS  Google Scholar 

  4. R.J. Wasilewski, S.R. Butler, and J.E. Hanlon: Met. Sci. J., 1967, vol. 1, pp. 104–10.

    Article  CAS  Google Scholar 

  5. F.E. Wang and W.J. Buehler: Appl. Phys. Lett., 1972, vol. 21, pp. 105–06.

    Article  CAS  Google Scholar 

  6. C.M. Wayman and K. Shimizu: Met. Sci. J., 1972, vol. 6, pp. 175–83.

    Article  CAS  Google Scholar 

  7. J.A. Shaw and S. Kyriakides: Acta Mater., 1997, vol. 45, pp. 683–700.

    Article  CAS  Google Scholar 

  8. M.W.M. van der Wijst: Ph.D. Dissertation, TU Eindhoven, the Netherlands, 1992.

  9. G.B. Kauffman and I. Mayo: Chem. Ed., 1996, vol. 2, pp. 1–21.

    Article  Google Scholar 

  10. T.W. Duerig and A.R. Pelton: ASM Materials Properties Handbook, Titanium Alloys, ASM International, Materials Park, OH, 1994, pp. 1035–48.

    Google Scholar 

  11. J. Beyer: J. Phys. IV, 1995, vol. 5, pp. C2 433–41.

    Article  Google Scholar 

  12. K. Madangopal: Acta Mater., 1997, vol. 45, pp. 5347–65.

    Article  CAS  Google Scholar 

  13. K. Bhattacharya, S. Conti, G. Zanzotto, and J. Zimmer: Nature, 2004, vol. 428, pp. 55–59.

    Article  CAS  Google Scholar 

  14. K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511–678.

    Article  CAS  Google Scholar 

  15. H.S. Tzou, H.J. Lee, and S.M. Arnold: Mech. Adv. Mater. Struc., 2005, vol. 11, pp. 367–93.

    Article  Google Scholar 

  16. T.W. Duerig: Mater. Sci. Forum, 1990, vols. 56-58, pp. 679–92.

  17. C. Zhang and R.H. Zee: Proc. IECEC, 1996, pp. 239–44.

  18. B. Kim, M.G. Lee, Y.P. Lee, Y.I. Kim, and G.H. Lee: Sensor Actuator, 2006, vol. A125, pp. 429–37.

    Article  CAS  Google Scholar 

  19. A.W. Anson, D.H.R. Jenkins, and S. Andrews: Proc. Technology Transfer Workshop, ESA SP-364, 1994, pp. 73–77.

  20. D. Mantovani: J. Min. Met. Mater. Soc., 2000, vol. 52, pp. 36–44.

    Article  CAS  Google Scholar 

  21. T. Duerig, A. Pelton, and D. Stoeckel: Mater. Sci. Eng. A, 1999, vols. A273-5, pp. 149–60.

    Google Scholar 

  22. J.V. Humbeeck: Mater. Sci. Eng. A, 1999, vols. A273-5, pp. 134–48.

    Google Scholar 

  23. K. Gall, J. Tyber, G. Wilkesanders, S.W. Robertson, R.O. Ritchie, and H.J. Maier: Mater. Sci. Eng. A, 2008, vol. A486, pp. 389–403.

    CAS  Google Scholar 

  24. C.P. Frick, A.M. Ortega, J. Tyber, A. El. M. Maksound, H.J. Maier, Y. Liu, and K. Gall: Mater. Sci. Eng. A, 2005, vol. A405, pp. 34–49.

    CAS  Google Scholar 

  25. G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner: Mater. Sci. Eng. A, 2004, vol. A378, pp. 24–33.

    CAS  Google Scholar 

  26. N.B. Morgan and C.M. Friend: J. Phys. IV, 2001, vol. 11, pp. 325–32.

    Google Scholar 

  27. E. Hornbogen: J. Mater. Sci., 2004, vol. 39, pp. 385–99.

    Article  CAS  Google Scholar 

  28. M.F.X. Wagner: Proc. ICSMA-15, 2010, pp. 1–8.

  29. J.V. Humbeeck: J. Phys. IV, 1991, vol. 1, pp. C4189–97.

    Google Scholar 

  30. N. Jost: Mater. Sci. Eng. A, 1999, vols. 273-5A, pp. 649–53.

    Google Scholar 

  31. A. Mielczareka, M. Marczyk, and W. Riehemann: Solid State Phenom., 2008, vol. 137, pp. 137–44.

    Article  Google Scholar 

  32. M. Pattabi, K. Ramakrishna, and K.K. Mahesh: Mater. Sci. Eng. A, 2007, vol. 448A, pp. 33–38.

    Google Scholar 

  33. Y Liu, J. Laeng, T.V. Chin, and T.H. Nam: J. Alloys Compd., 2008, vol. 449, pp. 144–47.

    Article  CAS  Google Scholar 

  34. H. Matsumoto: J. Alloys Compd., 2003, vol. 350, pp. 213–27.

    Article  CAS  Google Scholar 

  35. C. Urbina, S. De la Flor, and F. Ferrando: Mater. Sci. Eng. A, 2009, vol. A501, pp. 197–206.

    CAS  Google Scholar 

  36. D. Wurzel: Mater. Sci. Eng. A, 1999, vols. 273-5A, pp. 634–38.

    Google Scholar 

  37. I. Karaman, H.E. Karaca, H.J. Maier, and Z.P. Luo: Metall. Mater. Trans. A 2003, vol. 34A, pp. 2527–39.

    Article  CAS  Google Scholar 

  38. D. Treppmann and E. Hornbogen: J. Phys. IV, 1997, vol. 7, pp. 211–20.

    Article  Google Scholar 

  39. D.P. Field: Ultramicroscopy, 1997, vol. 67, pp. 1–9.

    Article  CAS  Google Scholar 

  40. M.M. Nowell and S.I. Wright: Ultramicroscopy, 2005, vol. 103, pp. 41–58.

    Article  CAS  Google Scholar 

  41. K. Gall and H.J. Maier: Acta Mater., 2002, vol. 50, pp. 4643–57.

    Article  CAS  Google Scholar 

  42. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials, R.W. Cahn, ed., Elsevier, Amsterdam, the Netherlands, 2007.

  43. C.M. Wayman: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1787–95.

    Article  CAS  Google Scholar 

  44. R.W.K Honeycomb and H.K.D.H. Bhadeshia: Steels: Microstructure and Properties, 3rd ed. Edward Arnold, ed., Butterworths-Heinemann, Oxford, UK, 2006.

  45. K.F. Hane and T.W. Shield: Acta Mater., 2000, vol. 47, pp. 2603–17.

    Article  Google Scholar 

  46. V.D. Hiwarkar, S.K. Sahoo, K.V. Mani Krishna, I. Samajdar, G.K. Dey, D. Srivastav, R. Tewari, S. Banarjee, and R.D. Doherty: Acta Mater., 2009, vol. 57, pp. 5812–21.

    Article  CAS  Google Scholar 

  47. S. Miyazaki, K. Otsuka, and C.M. Wayman: Acta Metall., 1989, vol. 37, pp. 1873–84.

    Article  CAS  Google Scholar 

  48. K. Madangopal: Acta Mater., 2000, vol. 48, pp. 1325–44.

    Article  Google Scholar 

  49. A.J. Bogers and W.G. Burgers: Acta Metall., 1964, vol. 12, p. 255.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support from the National Facility of Texture and OIM (a DST-IRPHA project) at IIT Bombay is acknowledged. This work was supported by a major grant from UK-India Education Research Initiative (UKIERI) and Rolls-Royce Plc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Samajdar.

Additional information

Manuscript submitted December 5, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, R., Jain, L., Maji, B.C. et al. Origin of Microstructural Irreversibility in Ni-Ti Based Shape Memory Alloys during Thermal Cycling. Metall Mater Trans A 43, 1277–1287 (2012). https://doi.org/10.1007/s11661-011-0970-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0970-y

Keywords

Navigation