Skip to main content
Log in

Loss of Ductility Caused by AlN Precipitation in Hadfield Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two modified X120Mn12 Hadfield steels, differing in the amount of the alloying elements Al and N, are analyzed with respect to AlN precipitation and its effects on ductility. Charpy impact tests are performed, demonstrating the loss of ductility in the one grade containing a high density of AlN precipitates. The characterization of the precipitates is carried out by high-resolution scanning electron microscopy (HRSEM). Depending on chemical composition, primary and secondary AlN precipitates are detected on prior austenite grain boundaries and within the bulk volume. The experimental observations are confirmed by thermokinetic simulations, using the software package MatCalc (Vienna University of Technology, Vienna, Austria).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The effective volume misfit of AlN at dislocations, originally determined with 0.19 in Ref. 40 must be replaced by 0.27 when using MatCalc versions 5.40 and higher. The misfit value has erroneously been taken twice in older versions.

References

  1. R.A. Hadfield: Science, 1888, vol. 12, pp. 284-86.

    Google Scholar 

  2. C. Efstathiou and H. Sehitoglu: Acta Mater., 2010, vol. 58, pp. 1479-88.

    Article  CAS  Google Scholar 

  3. H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P.J. Jacques: Acta Mater., 2010, vol. 58, pp. 2464-76.

    Article  CAS  Google Scholar 

  4. T.S. Wang, B. Lu, M. Zhang, R.J. Hou, and F.C. Zhang: Mater. Sci. Eng. A, 2007, vol. 458, pp. 249-52.

    Article  Google Scholar 

  5. W. Yan, L. Fang, K. Sun, and Y. Xu: Mater. Sci. Eng. A, 2007, vols. 460-1, pp. 542-49.

    Google Scholar 

  6. B. Hutchinson and N. Ridley: Scripta Mater., 2006, vol. 55, pp. 299-302.

    Article  CAS  Google Scholar 

  7. C. Efstathiou and H. Sehitoglu: Mater. Sci. Eng. A, 2009, vol. 506, pp. 174-79.

    Article  Google Scholar 

  8. P.H. Adler, G.B. Olson, and W.S. Owen: Metall. Trans. A, 1986, vol. 17A, pp. 1725-37.

    Article  CAS  Google Scholar 

  9. D. Canadinc, I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, and H.J. Maier: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1821-31.

    Article  CAS  Google Scholar 

  10. D. Canadinc, H. Sehitoglu, H.J. Maier, and Y.I. Chumlyakov: Acta Mater., 2005, vol. 53, pp. 1831-42.

    Article  CAS  Google Scholar 

  11. D. Canadinc, H. Sehitoglu, and H.J. Maier: Mater. Sci. Eng. A, 2007, vols. 454-5, pp. 662-66.

    Google Scholar 

  12. M. Abbasi, S. Kheirandish, Y. Kharrazi, and J. Hejazi: Wear, 2010, vol. 268, pp. 202-07.

    Article  CAS  Google Scholar 

  13. M. Abbasi, S. Kheirandish, Y. Kharrazi, and J. Hejazi: Mater. Sci. Eng., 2009, vols. 513-4, pp. 72-76.

    Google Scholar 

  14. E.G. Astafurova, Y.I. Chumlyakov, and H.J. Maier: Int. J. Fract., 2009, vol. 160, pp. 143-49.

    Article  CAS  Google Scholar 

  15. F.G. Wilson and T. Gladman: Int. Mater. Rev., 1988, vol. 33, pp. 221-86.

    Article  CAS  Google Scholar 

  16. E.T. Turkdogan: Ironmaker Steelmaker, 1989, vol. 16, pp. 61-75.

    CAS  Google Scholar 

  17. K.E. Höner and S. Baliktay: Giesserei Forsch., 1978, vol. 30, pp. 53-64.

    Google Scholar 

  18. F.K. Nauman and E. Hengler: Stahl Eisen, 1962, vol. 82, pp. 612-21.

    Google Scholar 

  19. K. Roesch and K. Zimmermann: Stahlguss—Band 17 der Stahleisen Bücher, Verlag Stahleisen mbH, Düsseldorf, Germany, 1966, pp. 51-57.

    Google Scholar 

  20. K. Schwerdtfeger: Rißanfälligkeit von Stählen beim Stranggießen und Warmumformen, Verlag Stahleisen mbH, Düsseldorf, Germany, 1994.

    Google Scholar 

  21. D.E. Dutcher: Mod. Cast., 1999, vol. 89, pp. 46-49.

    CAS  Google Scholar 

  22. E. Schürmann: Giesserei, 1974, vol. 61, pp. 375-83.

    Google Scholar 

  23. J. Svoboda, F.D. Fischer, P. Fratzl, and E. Kozeschnik: Mater. Sci. Eng. A, 2004, vol. A385, pp. 166-74.

    CAS  Google Scholar 

  24. E. Kozeschnik, J. Svoboda, P. Fratzl, and F.D. Fischer: Mater. Sci. Eng. A, 2004, vol. A385, pp. 157-65.

    CAS  Google Scholar 

  25. E. Kozeschnik, J. Svoboda, and F.D. Fischer: CALPHAD, 2005, vol. 28, pp. 379-82.

    Article  Google Scholar 

  26. E. Piwowarsky and H.L. Roes: Giesserei, 1954, vol. 41, pp. 357-69.

    CAS  Google Scholar 

  27. F.C. Zhang, B. Lv, T.S. Wang, C.L. Zheng, M. Zhang, H.H. Luo, H. Liu, and A.Y. Xu: Mater. Sci. Technol., 2010, vol. 26, pp. 223-29.

    Article  CAS  Google Scholar 

  28. H. Schröttner: Gefüge der Gusseisenlegierungen / Structure of Cast Iron Alloys, Schiele & Schön, Berlin, Germany, 2008, pp. 23-54.

    Google Scholar 

  29. Thermodynamic Database ‘mc_fe.tdb’, version 0.014, Institute of Materials Science and Technology, Vienna University of Technology, Vienna, Austria.

  30. Diffusion Database ‘mc_fe.ddb’, version 1.03, Institute of Materials Science and Technology, Vienna University of Technology, Vienna, Austria.

  31. K. Russell: Adv. Colloid Sci., 1980, vol. 13, pp. 205-318.

    Article  CAS  Google Scholar 

  32. K.G.F. Janssens, D. Raabe, E. Kozeschnik, M.A. Miodownik, and B. Nestler: Computational Materials Engineering—An Introduction to Microstructure Evolution, Elsevier Academic Press, Oxford, UK, 2007, pp. 179-217.

    Google Scholar 

  33. E. Kozeschnik, J. Svoboda, and F.D. Fischer: Proc. Int. Conference Solid-Solid Phase Transformations in Inorganic Materials, PTM 2005, Pointe Hilton Squaw Peak Resort, Phoenix, AZ, 2005, pp. 301–10.

  34. R. Kampmann and R. Wagner: Proc. of the 2 nd Acta-Scripta Metallurgica Conf., Sonnenberg, Germany, 1983, pp. 91-103.

    Google Scholar 

  35. E. Kozeschnik, J. Svoboda, R. Radis, and F.D. Fischer: Model. Simulat. Mater. Sci. Eng., 2010, vol. 18, no. 015011, pp. 1-19.

    Google Scholar 

  36. E. Kozeschnik, W. Rindler, and B. Buchmayr: Int. J. Mater. Res., 2007, vol. 98, pp. 826-31.

    Article  CAS  Google Scholar 

  37. B. Sonderegger and E. Kozeschnik: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 499-510.

    Article  CAS  Google Scholar 

  38. B. Sonderegger and E. Kozeschnik: Scripta Mater., 2009, vol. 60, pp. 635-38.

    Article  CAS  Google Scholar 

  39. D. Hull and D.J. Bacon: Introduction to Dislocations, 3rd ed., Pergamon Press, Oxford, UK, 1984, p. 22.

    Google Scholar 

  40. R. Radis and E. Kozeschnik: Model. Simulat. Mater. Sci. Eng., 2010, vol. 18, 055003, pp. 1-16.

    Google Scholar 

  41. R. Radis: Ph.D. Dissertation, Verlag der Technischen Universität Graz, Graz, Austria, 2010.

  42. M. Pudar, S. Zamberger, K. Spiradek-Hahn, R. Radis, and E. Kozeschnik: Steel Res. Int., 2010, vol. 81, pp. 372-80.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support by the companies VAE GmbH and VAE Eisenbahnsysteme GmbH is acknowledged gratefully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Radis.

Additional information

Manuscript submitted January 18, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radis, R., Schlacher, C., Kozeschnik, E. et al. Loss of Ductility Caused by AlN Precipitation in Hadfield Steel. Metall Mater Trans A 43, 1132–1139 (2012). https://doi.org/10.1007/s11661-011-0968-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0968-5

Keywords

Navigation