Skip to main content
Log in

The Kinetics of and the Microstructure Induced by the Recrystallization of Copper

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The kinetics of the recrystallization of pure copper was investigated by differential scanning calorimetry (DSC). The associated microstructural change was characterized by electron backscatter diffraction imaging (EBSD), by analyzing deformed specimens before recrystallization and specimens after partial recrystallization and after completed recrystallization. The experimental results acquired by the two methods were compared with each other and discussed in the context of the available body of literature results. The observed kinetics deviate from Johnson–Mehl–Avrami–Kolmogorov (JMAK)-like behavior. The observed grain-area distribution is unusually broad and skewed toward large grains. Comparison with mesoscopic, geometric simulations showed that previously proposed (simple) models fail to correctly describe the microstructure resulting from recrystallization, although they can successfully model the recrystallization kinetics. It was concluded that the experimental results on both the kinetics and the microstructure can be reconciled employing a recrystallization model incorporating ongoing (i.e., beyond time t = 0) nucleation and accounting for the inhomogeneous nature of the deformed material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. It must be recognized that nucleation in recrystallization is not the outcome of a fluctuation phenomenon as in heterogeneous phase transformations. Instead, the “nuclei” are already present in the deformed material (as subgrains[3]) and can become “activated” subject to instability criteria.[35] Nevertheless, the moment a (sub-) grain starts to grow is denoted "nucleation."

  2. This refers to recrystallization that occurs during annealing after deformation and not (dynamically) during deformation.

  3. The growth exponent n can also be determined from isochronally (i.e., with constant heating rate) conducted experiments. To this end, an appropriately adapted variant of the JMAK equation has to be applied and then n is the negative of the slope of the straight line possibly observed in a plot of \(\ln(-\ln(1-f))\) vs \(\ln \Upphi\) (with \(\Upphi\) as the heating rate). Refer to Section 9.6.15.5 in Ref. 13.

  4. The image quality is a measure of the quality of the backscatter electron diffraction pattern of the material corresponding to one pixel.

  5. It is also possible to use the average orientation spread in a grain to distinguish between recrystallized and unrecrystallized parts of the specimen. In the present study, both methods have been shown to lead to the same results.

  6. If the misorientation between two pixels is smaller than 5°, the pixels are considered to belong to the same grain.

  7. This plot and its analysis are referred to by some authors as the microstructural path method.[15,42]

References

  1. W.G. Burgers: Rekristallisation, Verformter Zustand und Erholung, Akademische Verlags-Gesellschaft, Leipzig, Germany, 1941.

    Google Scholar 

  2. P. Cotterill and P.R. Mould: Recrystallization and Grain Growth in Metals, Surrey University Press, London, 1976.

    Google Scholar 

  3. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Amsterdam, The Netherlands, 2004.

    Google Scholar 

  4. Y. Bréchet and G. Martin: Comptes Rendus Phys., 2006, vol. 7, 959–76.

    Article  Google Scholar 

  5. R.D. Doherty: in Solid to Solid Phase Transformations in Inorganic Materials, J.M. Howe, D.E. Laughlin, J.K. Lee, U. Dahmen, and W.A. Soffa, eds., TMS, Warrendale, PA, 2005, vol. 1, pp. 553−64.

  6. P. Krüger and E. Woldt: Acta Metall. Mater., 1992, vol. 40, pp. 2933–42.

    Article  Google Scholar 

  7. T.O. Sætre, O. Hunderi, and E. Nes: Acta Metall., 1986, vol. 34, pp. 981–87.

    Article  Google Scholar 

  8. H.S. Zurob, Y. Bréchet, and J. Dunlop: Acta Mater., 2006, vol. 54, pp. 2983–3990.

    Article  Google Scholar 

  9. A. Brahme, J.M. Fridy, H. Weiland, and A.D. Rollett: Modell. Simul. Mater. Sci. Eng., 2009, vol. 17, p. 015005.

    Article  Google Scholar 

  10. E. Fjeldberg and K. Marthinsen: Comp. Mater. Sci., 2010, vol. 48, pp. 267–91.

    Article  CAS  Google Scholar 

  11. Y.B. Chun, S.L. Semiatin, and S.K. Hwang: Acta Mater., 2006, vol. 54, pp. 6373–89.

    Article  Google Scholar 

  12. F. Liu, F. Sommer, C. Bos, and E.J. Mittemeijer: Int. Mater. Rev., 2007, vol. 52, pp. 193–212.

    Article  CAS  Google Scholar 

  13. E.J. Mittemeijer: Fundamentals of Materials Science, Springer, Heidelberg, Germany, 2010.

    Google Scholar 

  14. R. Bauer, E. Bischoff, and E.J. Mittemeijer: Int. J. Mater. Res., 2011, vol. 102, pp. 1027–41.

    Article  CAS  Google Scholar 

  15. R.A. Vandermeer and D. Juul Jensen: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2227–35.

    Article  CAS  Google Scholar 

  16. D. Juul Jensen: Acta Metall. Mater., 1995, vol. 11, pp. 4117–29.

    Google Scholar 

  17. R.A. Vandermeer and D. Juul Jensen: Mater. Sci. Forum, 2004, vols. 467–470, pp. 193–96.

    Article  Google Scholar 

  18. D.P. Field, L.T. Bradford, M.M. Nowell, and T.M. Lillo: Acta Mater., 2007, vol. 55, pp. 4233–41.

    Article  CAS  Google Scholar 

  19. F. Scholz and E. Woldt: Proc. 19th Riso Symp. on Materials Science, J.V. Carstensen, T. Leffers, T. Lorentzen, O.B. Pedersen, B.F. Sorensen, and G. Winther, eds., Risø National Laboratory, Roskilde, Denmark, 1998.

  20. E. Woldt: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2465–73.

    Article  CAS  Google Scholar 

  21. E. Woldt and D. Juul Jensen: Metall. Mater. Trans. A, vol. 26A, pp. 1717–24.

  22. N. Hansen, T. Leffers, and J.K. Kjems: Acta Metall., 1981, vol. 29, pp. 1523–33.

    Article  CAS  Google Scholar 

  23. A.M. Wusatowska-Sarnek, H. Miura, and T. Sakai: Mater. Trans. JIM, 2001, vol. 42, pp. 2452–59.

    Article  CAS  Google Scholar 

  24. L. Blaz and P. Kwapisinski: Arch. Metall. Mater., 2009, vol. 54, pp. 161–70.

    CAS  Google Scholar 

  25. Y. Amouyal, S.V. Divinski, L. Klinger, and E. Rabkin: Acta Mater., 2008, vol. 56, pp. 5500–13.

    Article  CAS  Google Scholar 

  26. D.P. Field, M.M. Nowell, P. Triverdi, S.I. Wright, and T.M. Lillo: Solid State Phenom., 2005, vol. 105, pp. 157–62.

    Article  CAS  Google Scholar 

  27. B. Hutchinson, S. Jonsson, and L. Ryde: Scripta Metall., 1989, vol. 23, pp. 671–86.

    Article  CAS  Google Scholar 

  28. M.J. Luton, R.A. Petrovic, and J.J. Jonas: Acta Metall., 1980, vol. 28, pp. 729–43.

    Article  CAS  Google Scholar 

  29. G. Benchabane, Z. Boumerzoug, I. Thibon, and T. Gloriant: Mater. Charact., 2008, vol. 59, pp. 1425–28.

    Article  CAS  Google Scholar 

  30. F. Häßner: in Thermal Analysis in Metallurgy, R.D. Shull and A. Joshi, eds., TMS, Warrendale, PA, 1992, pp. 233–57.

  31. M.J. Starinka and A.M. Zahra: Thermochim. Acta, 1997, vol. 298, pp. 179–89.

    Article  CAS  Google Scholar 

  32. K. Marthinsen, O. Lohne, and E. Nes: Acta Metall., 1989, vol. 37, pp. 135–45.

    Article  CAS  Google Scholar 

  33. T. Furu, K. Marthinsen, and E. Nes: Mater. Sci. Technol., 1990, vol. 6, pp. 1093–1102.

    CAS  Google Scholar 

  34. A.D. Rollett, D.J. Srolovitz, R.D. Doherty, and M.P. Anderson: Acta Metall., 1989, vol. 37, pp. 627–39.

    Article  CAS  Google Scholar 

  35. F. Häßner and K. Sztwiertina: Scripta Metall., 1992, vol. 27, pp. 1545–50.

    Article  Google Scholar 

  36. G. Bäro and H. Gleiter: Z. Metallk., 1972, vol. 63, pp. 661–63.

    Google Scholar 

  37. A. Berger, P.J. Wilbrandt, F. Ernst, U. Klement, and P. Haasen: Progr. Mater. Sci., 1998, vol. 32, pp. 1–95.

    Article  Google Scholar 

  38. F.J. Humphreys: J. Mater. Sci., 2001, vol. 36, pp. 3833–54.

    Article  CAS  Google Scholar 

  39. E.E. Underwood: Quantitative Stereology, Addison-Wesley Publishing Company, Reading, MA, 1970.

    Google Scholar 

  40. E.A. Jägle and E.J. Mittemeijer: Modell. Simul. Mater. Sci. Eng., 2010, vol. 18, p. 065010.

    Article  Google Scholar 

  41. E.J. Mittemeijer: J. Mater. Sci., 1992, vol. 27, pp. 3977–87.

    Article  CAS  Google Scholar 

  42. R.A. Vandermeer and D. Juul Jensen: Acta Mater., 2001, vol. 49, 2083–94.

    Article  CAS  Google Scholar 

  43. U.F. Kocks, C.N. Tomé, and H.R. Wenk: Texture and Anisotropy, Cambridge University Press, Cambridge, United Kingdom, 1998.

    Google Scholar 

  44. M. Miodownik, A.W. Godfrey, E.A. Holm, and D.A. Hughes: Acta Mater., 1999, vol. 47, p. 2661.

    Article  CAS  Google Scholar 

  45. J.K. Mackenzie: Biometrika, 1958, vol. 45, pp. 229–40.

    Google Scholar 

  46. J.W. Cahn: Acta Metall., 1956, vol. 4, pp. 449–59.

    Article  CAS  Google Scholar 

  47. E.A. Jägle and E.J. Mittemeijer: Solid State Phenom., 2011, vols. 172–174, pp. 1128–33.

    Article  Google Scholar 

  48. E.A. Jägle and E.J. Mittemeijer: Acta Mater., 2011, vol. 59, pp. 5775–86.

    Article  Google Scholar 

  49. G. Gottstein and L.S. Shvindlerman: Grain Boundary Migration in Metals, 2nd ed., CRC Press, Boca Raton, FL, 2010.

    Google Scholar 

  50. E.A. Jägle and E.J. Mittemeijer: Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Stuttgart, Germany, unpublished research, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Jägle.

Additional information

Manuscript submitted April 26, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jägle, E.A., Mittemeijer, E.J. The Kinetics of and the Microstructure Induced by the Recrystallization of Copper. Metall Mater Trans A 43, 1117–1131 (2012). https://doi.org/10.1007/s11661-011-0959-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0959-6

Keywords

Navigation