Skip to main content
Log in

The Effect of Cooling Rate, and Cool Deformation Through Strain-Induced Transformation, on Microstructural Evolution and Mechanical Properties of Microalloyed Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this article, a detailed study was conducted to evaluate the microstructural evolution and mechanical properties of microalloyed steels processed by thermomechanical schedules incorporating cool deformation. Cool deformation was incorporated into a full scale simulation of hot rolling, and the effect of prior austenite conditioning on the cool deformability of microalloyed steels was investigated. As well, the effect of varying cooling rate, from the end of the finishing stage to the cool deformation temperature, 673 K (400 °C), on mechanical properties and microstructural evolution was studied. Transmission electron microscopy (TEM) analysis, in particular for Nb containing steels, was also conducted for the precipitation evaluation. Results show that cool deformation greatly improves the strength of microalloyed steels. Of the several mechanisms identified, such as work hardening, precipitation, grain refinement, and strain-induced transformation (SIT) of retained austenite, SIT was proposed, for the first time in microalloyed steels, to be a significant factor for strengthening due to the deformation in ferrite. Results also show that the effect of precipitation in ferrite for the Nb bearing steels is greatly overshadowed by SIT at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. TESTSTAR is registered trademarks of MTS Systems Corporation, Eden Prairie, MN.

  2. PHILIPS is a trademark of FEI Company, Eindhoven, The Netherlands.

References

  1. C.O.I. Tamura, T. Tanaka, and H. Sekine: Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth and Co., London, 1988, pp. 179–86.

    Google Scholar 

  2. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, University Press, Cambridge, United Kingdom, 1997, pp. 213–61.

    Google Scholar 

  3. S. Shanmugam, R.D.K. Misra, J. Hartmann, and S.G. Jansto: Mater. Sci. Eng. A, 2006, vol. 441 (1–2), pp. 215–29.

    Google Scholar 

  4. A. Fatehi, J. Calvo, A.M. Elwazri, D.Q. Bai, and S. Yue: Materials Science and Technology 2007 Conference Proceedings, September 2007, Detroit, MI, M.J. Merwin, ed., 2007, pp. 243–53.

  5. J. Calvo, A. Fatehi, A.M. Elwazri, and S. Yue: Rio Pipeline Conf. 2007, Rio de Janeiro, Brazil, Oct. 2–4, 2007, pp. 1–8.

  6. A. Fatehi: M.Sc. Thesis, McGill University, Montreal, 2008.

  7. S.H. Mousavi Anijdan and S. Yue: Materials Science and Technology 2009, Conference Proceedings, October 2009, Pittsburgh, PA, 2009, pp. 1329–36.

  8. A.M. Elwazri, R. Varano, S. Yue, D.Q. Bai, and F. Siciliano: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2929–36.

    Article  CAS  Google Scholar 

  9. A.M. Elwazri, D.Q. Bai, F. Siciliano, and S. Yue: Can. Metall. Q., 2006, vol. 45 (4), pp. 441–50.

    CAS  Google Scholar 

  10. J.J. Yi, K.J. Yu, I.S. Kim, and S.J. Kim: Metall. Trans. A, 1983, vol. 14A, pp. 1497–1504.

  11. S. Sangal, N.C. Goel, C. Naresh, and K. Tangri: Metall. Trans. A, 1985, vol. 16A, pp. 2023–29.

    CAS  Google Scholar 

  12. N.C. Goel, S. Sangal, and K. Tangri: Metall. Trans. A, 1985, vol. 16A, pp. 2013–21.

    CAS  Google Scholar 

  13. A. Di Chiro: Ph.D. Thesis, McGill University, Montreal, 1997.

  14. N.C. Goel, J.P. Chakravarty, and K. Tangri: Metall. Trans. A, 1987, vol. 18A, pp. 5–9.

    CAS  Google Scholar 

  15. Y. Sakuma, D. Matlock, and G. Krauss: Metall. Trans. A, 1992, vol. 23A, pp. 1233–41.

    CAS  Google Scholar 

  16. D.S. Bott, L.F.G. De Souza, J.C.G. Teixeira, and P.R. Rios: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 443–54.

    Article  CAS  Google Scholar 

  17. H. Huang, O. Matsumura, and T. Furukawa: Mater. Sci. Technol., 1994, vol. 10, pp. 621–26.

    CAS  Google Scholar 

  18. A.P. Singh, D. Sengupta, S. Jha, M.P. Yallasiri, and N.S. Mishra: Mater. Sci. Technol., 2004, vol. 20, pp. 1317–25.

    Article  CAS  Google Scholar 

  19. J.S. Park and Y.K. Lee: Scripta Mater., 2007, vol. 56 (3), pp. 225–28.

    Article  CAS  Google Scholar 

  20. G. Krauss and S.W. Thompson: ISIJ Int., 1995, vol. 35 (8), pp. 937–45.

    Article  CAS  Google Scholar 

  21. P.A. Manohar, T. Chandra, and C.R. Killmore: ISIJ Int., 1996, vol. 36 (12), pp. 1486–93.

    Article  CAS  Google Scholar 

  22. P. Cizek, B. Wynne, C. Davies, B. Muddle, and P. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1331–49.

    Article  CAS  Google Scholar 

  23. H.S. Zurob: Ph.D. Thesis, McMaster University, Hamilton, 2003.

  24. R.C. Sharma, V.K. Lakshmanan, and J.S. Kirkaldy: Metall. Trans. A, 1984, vol. 15A, pp. 545–53.

    CAS  Google Scholar 

  25. C.P. Reip, S. Shanmugam, and R.D.K. Misra: Mater. Sci. Eng. A, 2006, vol. 424 (1–2), pp. 307–17.

    Google Scholar 

  26. S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, J. Hartmann, and S.G. Jansto: Mater. Sci. Eng. A, 2008, vol. 478 (1–2), pp. 26–37.

    Google Scholar 

  27. R.D.K. Misra, G.C. Weatherly, J.E. Hartmann, and A.J. Boucek: Mater. Sci. Technol., 2001, vol. 17, pp. 1119–29.

    CAS  Google Scholar 

  28. R. Misra, K. Tenneti, G. Weatherly, and G. Tither: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2341–51.

    Article  CAS  Google Scholar 

  29. S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, T. Mannering, D. Panda, and S. Jansto: Mater. Sci. Eng. A, 2007, vols. 460–461, pp. 335–43.

    Google Scholar 

  30. C. Zhou and R. Priestner: ISIJ Int., 1996, vol. 36 (11), pp. 1397–1405.

    Article  CAS  Google Scholar 

  31. S.H. Mousavi Anijdan: Ph.D. Thesis, McGill University, Montreal, 2010.

  32. M. Charleux, W.J. Poole, M. Militzer, and A. Deschamps: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1635–47.

    Article  CAS  Google Scholar 

  33. P. Maugis, D. Gendt, S. Lanteri, and P. Barges: Defect and Diffusion Forum, Y. Limoge and J.L. Bocquet, eds., Scitec Publication, Switzerland, 2001, vols. 194–199, pp. 1767–72.

  34. F. Perrard, P. Donnadieu, A. Deschamps, and P. Barges: Philos. Mag., 2006, vol. 86 (27), pp. 4271–84.

    Article  CAS  Google Scholar 

  35. P.A. Manohar and T. Chandra: ISIJ Int., 1998, vol. 38 (7), pp. 766–74.

    Article  CAS  Google Scholar 

  36. R. Priestner and P.D. Hodgson: Mater. Sci. Technol., 1992, vol. 8, pp. 849–54.

    CAS  Google Scholar 

  37. I.A. Yakubtsov and J.D. Boyd: Mater. Sci. Technol., 2001, vol. 17, pp. 296–301.

    Article  CAS  Google Scholar 

  38. S. Thompson, D. Colvin, and G. Krauss: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1557–71.

    Article  CAS  Google Scholar 

  39. Y. Sakuma, O. Matsumura, and H. Takechi: Metall. Trans. A, 1991, vol. 22A, pp. 489–98.

    CAS  Google Scholar 

  40. Y. Sakuma, D. Matlock, and G. Krauss: Metall. Trans. A, 1992, vol. 23A, pp. 1221–32.

    CAS  Google Scholar 

  41. J. Mahieu, J. Maki, B.C. De. Cooman, and S. Claessens: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2573–80.

    Article  CAS  Google Scholar 

  42. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2442–54.

    Article  CAS  Google Scholar 

  43. J. Calvo, I.H. Jung, A.M. Elwazri, D. Bai, and S. Yue: Mater. Sci. Eng. A, 2009, vol. 520 (1–2), pp. 90–96.

    Google Scholar 

  44. J. Cao, Q.Yung, and Q. Liu: J. Mater. Sci., 2007, vol. 42, pp. 10080–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), McGill University, Evraz Inc. NA, and The Canadian Neutron Beam Centre at Chalk River is gratefully acknowledged. As well, Dr. David Liu’s useful help with the TEM work is gratefully acknowledged. The authors also thank Drs. Jessica Calvo and Ahmad Rezaeian for their valuable help and useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Mousavi Anijdan.

Additional information

Manuscript submitted January 1, 2011

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mousavi Anijdan, S.H., Yue, S. The Effect of Cooling Rate, and Cool Deformation Through Strain-Induced Transformation, on Microstructural Evolution and Mechanical Properties of Microalloyed Steels. Metall Mater Trans A 43, 1140–1162 (2012). https://doi.org/10.1007/s11661-011-0958-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0958-7

Keywords

Navigation