Skip to main content
Log in

Copper, Boron, and Cerium Additions in Type 347 Austenitic Steel to Improve Creep Rupture Strength

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Type 347 austenitic stainless steel (18Cr-12Ni-Nb) was alloyed with copper (3 wt pct), boron (0.01 to 0.06 wt pct), and cerium (0.01 wt pct) with an aim to increase the creep rupture strength of the steel through the improved deformation and cavitation resistance. Short-term creep rupture strength was found to increase with the addition of copper in the 347 steel, but the long-term strength was inferior. Extensive creep cavitation deprived the steel of the beneficial effect of creep deformation resistance induced by nano-size copper particles. Boron and cerium additions in the copper-containing steel increased its creep rupture strength and ductility, which were more for higher boron content. Creep deformation, grain boundary sliding, and creep cavity nucleation and growth in the steel were found to be suppressed by microalloying the copper-containing steel with boron and cerium, and the suppression was more for higher boron content. An auger electron spectroscopic study revealed the segregation of boron instead of sulfur on the cavity surface of the boron- and cerium-microalloyed steel. Cerium acted as a scavenger for soluble sulfur in the steels through the precipitation of cerium sulfide (CeS). This inhibited the segregation of sulfur and facilitated the segregation of boron on cavity surface. Boron segregation on the nucleated cavity surface reduced its growth rate. Microalloying the copper-containing 347 steel with boron and cerium thus enabled to use the full extent of creep deformation resistance rendered by copper nano-size particle by increase in creep rupture strength and ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Y. Sawaragi, N. Otsuka, H. Senba, and S. Yamamoto: Sumitomo Search, 1994, vol. 56, pp. 34-43.

    CAS  Google Scholar 

  2. H. Kimura and Y. Minami: Intl. Conf. Proc. ‘Creep’, Tokyo, Japan Society of Mechanical Engineers, 1986, pp. 221-6.

    Google Scholar 

  3. K. Laha, J. Kyono, and N. Shinya: Script. Mater., 2007, vol. 56, pp. 915-8.

    Article  CAS  Google Scholar 

  4. H.E. Evans: Mechanisms of Creep Fracture, Elsevier Applied Science Publishers, London, UK, 1984.

    Google Scholar 

  5. H. Riedel: Fracture at high Temperatures, Springer-Verlag, Berlin, Germany, 1987.

    Google Scholar 

  6. E. Smith and J.T. Barnby: Met. Sci. J., 1967, vol. 1, pp. 1-5.

    Article  CAS  Google Scholar 

  7. R. Raj and M.F. Ashby: Acta Metall., 1975, vol. 23, pp. 653-66.

    Article  Google Scholar 

  8. H. Trinkaus and H. Ullmaier: Phil. Mag., 1979, vol. 39, pp. 563-80.

    Article  CAS  Google Scholar 

  9. L.E. Svensson and G.L. Dunlop: Int. Met. Rev., 1981, vol. 26, pp. 109-31.

    Article  CAS  Google Scholar 

  10. W.D. Nix, K.S. Yu, and J.S. Wang: Metall. Trans. A, 1983, vol. 14A, pp. 563-70.

    Google Scholar 

  11. B.F. Dyson: Met. Sci., 1976, vol. 10, pp. 349-53.

    Article  Google Scholar 

  12. E.P. George, R.L. Kennedy, and D.P. Pope: Phys. Stat. Sol., 1998, vol. 167, pp. 313-33.

    Article  CAS  Google Scholar 

  13. R.T. Holt and W. Wallace: Int. Met. Rev., 1976, vol. 21, pp. 1-24.

    Article  CAS  Google Scholar 

  14. F. Cosandey, D. Li, F. Sczerzenie, and J.K. Tien: Metall. Trans. A, 1983, vol. 14A, pp. 611-21.

    Google Scholar 

  15. M. Fujiwara, H. Uchida, and S. Ohta: J. Mater. Sci. Lett., 1994, vol. 3, pp. 557-59.

    Article  Google Scholar 

  16. R.W. Swindeman, U.K. Sikka, and, R.L. Klueh: Metall. Trans. A, 1983, vol. 14A, pp. 581-93.

    Google Scholar 

  17. N. Shinya, J. Kyono, and K. Laha: Mater. Sci. Forum, 2003, vols. 426-32, pp. 1107-12.

    Article  Google Scholar 

  18. G. Eggeler and A. Dlouhy: Z. Metalld., 2005, vol. 96, no. 7, pp. 743-48.

    CAS  Google Scholar 

  19. T. Horiuchi, M. Igarashi, and F. Abe: ISIJ Int., 2002, vol. 42, pp. S67-S71.

    Article  CAS  Google Scholar 

  20. N. Shinya, J. Kyono, and K. Laha: Mater. Sci. Forum, 2007, vols. 539-43, pp. 3145-50.

    Article  Google Scholar 

  21. K. Laha, J. Kyono, and N. Shinya: Phil. Mag. A, 2007, vol. 87, no. 17, pp. 2483-2505.

    Article  CAS  Google Scholar 

  22. Y. Minami, H. Kimura, and Y. Ihara: Mater. Sci. Tech., 1986, vol. 2, pp. 795-806.

    CAS  Google Scholar 

  23. T. Sourmail: Mater. Sci. Tech., 2001, vol. 17, pp. 1-14.

    CAS  Google Scholar 

  24. K. Laha, J. Kyono, T. Sasaki, S. Kishimoto, and N. Shinya: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 399-409.

    Article  CAS  Google Scholar 

  25. W. Kesternich: Phil Mag., 1985, vol. A52, pp. 533-48.

    Google Scholar 

  26. H.J. Goldschmidt: J. Iron Steel Inst., 1971, vol. 209, pp. 900-09.

    CAS  Google Scholar 

  27. N.G. Needham and T. Gladman: Met. Sci., 1980, vol. 14, pp. 64-72.

    Article  CAS  Google Scholar 

  28. G.H. Edward and M.F. Ashby: Acta. Metall. 1979, vol. 27, pp. 1505-18.

    Article  CAS  Google Scholar 

  29. R. Raj and M.F. Ashby: Metall. Trans., 1971, vol. 2A, pp. 1113-27.

    Article  Google Scholar 

  30. J.R. Rice: Acta Metall., 1981, vol. 29, pp. 675-81.

    Article  CAS  Google Scholar 

  31. L.E. Davis, M.C. MacDonald, P.W. Palmberg, G.E. Riach, and R.E. Weber: Hand Book of Auger Electron Spectroscopy, 2nd ed., Physical Electronics Division, Perkin-Elmer Corporation, Eden Prairie, MN, 1976.

    Google Scholar 

  32. J.W. Gibbs: The Scientific papers of J. Willard Gibbs, “Thermodymanics”, Dover, New York, 1961, vol. 1, pp. 219–331.

  33. N.L. Peterson: Int. Met. Rev., 1983, vol. 28, no. 2, pp. 65-91.

    Article  CAS  Google Scholar 

  34. G.R. Purdy: Defect and Diffusion Forum, Graeme E. Murch, ed., Scitec Publication, 1992, vol. 83, pp. 131–40.

  35. H.P. Bonzel: Surface Physics of Materials, J.M. Blakely, ed., Academic Press, New York, NY, 1975, vol. 2, pp. 279–338.

Download references

Acknowledgments

One author (K. Laha) gratefully acknowledges the support of the Japanese Society for Promotion of Science (JSPS) for providing the JSPS postdoctoral fellowship for foreign researcher to carry out the research work at the National Institute for Material Science (NIMS), Tsukuba, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinkar Laha.

Additional information

Manuscript submitted November 23, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laha, K., Kyono, J. & Shinya, N. Copper, Boron, and Cerium Additions in Type 347 Austenitic Steel to Improve Creep Rupture Strength. Metall Mater Trans A 43, 1187–1197 (2012). https://doi.org/10.1007/s11661-011-0953-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0953-z

Keywords

Navigation