Skip to main content
Log in

Constitutive Relations for AA 5754 Based on Crystal Plasticity

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Constitutive equations for the multiaxial stress-strain behavior of aluminum alloy 5754 sheets were developed, based on crystal plasticity. A Taylor-based polycrystal plasticity model, a tangent formulation of the self-consistent viscoplastic model (VPSC), and an N-site viscoplastic model based on the fast Fourier transform (VPFFT) were used to fit a single slip system hardening law to the available data for tension, plane strain, and biaxial stretching. The fitting procedure yields good agreement with the monotonic stress-strain data, with similar parameter values for each model. When simulating multiaxial tests using the developed hardening law, models that allow both stress and strain variations in grains give better predictions of the stress-strain curves. Furthermore, generally, the simulated texture evolution is too rapid when compared to the experiments. By incorporating a more detailed neighbor interaction effect, the VPFFT model predicts texture evolution in better agreement with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. W.S. Miller, L. Zhuang, and J. Bottema: Mater. Sci. Eng. A, 2000, vol. 280, pp. 37–49.

    Article  Google Scholar 

  2. G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  3. R.J. Asaro and A. Needleman: Acta Metall., 1985, vol. 33 (6), pp. 923–53.

    Article  CAS  Google Scholar 

  4. Los Alamos Polycrystal Plasticity Code, Los Alamos National Laboratory LA-CC-88-6, Los Alamos, NM, 1988.

  5. U.F. Kocks, M.G. Stout, and A.D. Rollett: Proc. 8th Int. Conf. on the Strength of Metals and Alloys, Pergamon Press, Tampere, Finland, 1988, pp. 23–34.

    Google Scholar 

  6. C.A. Bronkhorst, S.R. Kalidindi, and L. Anand: Phys. Sci. Eng., 1992, vol. 341 (1662), pp. 443–77.

    Article  CAS  Google Scholar 

  7. A. Molinari, G.R. Canova, and S. Ahzi: Acta Metall., 1987, vol. 35, pp. 2983–94.

    Article  CAS  Google Scholar 

  8. R.A. Lebensohn and C.N. Tomé: Acta Metall., 1993, vol. 41 (9), pp. 2611–24.

    Article  CAS  Google Scholar 

  9. S.H. Choi, J.C. Brem, F. Barlat, and K.H. Oh: Acta Mater., 2000, vol. 48, pp. 1853–63.

    Article  CAS  Google Scholar 

  10. H. Moulinec and P. Suquet: Comput. Meth. Appl. Mech. Eng., 1998, vol. 157, pp. 68–94.

    Article  Google Scholar 

  11. R.A. Lebensohn: Acta Mater., 2001, vol. 21, pp. 2723–37.

    Article  Google Scholar 

  12. L. Delannay, S.R. Kalidindi, and P. Van Houtte: Mater. Sci. Eng. A, 2002, vol. 336, pp. 233–44.

    Article  Google Scholar 

  13. ASM Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 2, pp. 37–52.

  14. T. Foecke, M.A. Iadicola, A. Lin, and S.W. Banovic: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 306–13.

    Article  CAS  Google Scholar 

  15. M.A. Iadicola, T. Foecke, and S.W. Banovic: Int. J. Plast., 2008, vol. 24 (11), pp. 2084–2101.

    Article  CAS  Google Scholar 

  16. S.W. Banovic, M.A. Iadicola, and T. Foecke: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2246–58.

    Article  CAS  Google Scholar 

  17. J.S. Kallend, U.F. Kocks, A.D. Rollett, and H.R. Wenk: Mater. Sci. Eng. A, 1991, vol. 132, pp. 1–11.

    Article  Google Scholar 

  18. C.N. Tomé: Model. Simul. Sci. Eng., 1999, vol. 7, pp. 723–38.

    Article  Google Scholar 

  19. A. Brahme, M.H. Alvi, D. Saylor, J. Fridy, and A.D. Rollett: Scripta Mater., 2006, vol. 55, pp. 75–80.

    Article  CAS  Google Scholar 

  20. S. Li, I.J. Beyerlein, D.J. Alexander, and S.C. Vogel: Acta Mater., 2005, vol. 53, pp. 2111–25.

    Article  CAS  Google Scholar 

  21. R.A. Lebensohn and C.N. Tomé: Mater. Sci. Eng. A, 1994, vol. 175 (1–2), pp. 71–82.

    Google Scholar 

  22. R. Masson, M. Bornert, P. Suquet, and A. Zaoui: J. Mech. Phys. Solids, 2000, vol. 48, pp. 1203–27.

    Article  CAS  Google Scholar 

  23. S. M’Guil, S. Ahzi, H. Youssef, J. Gracio, and M.A. Khaleel: Mater. Sci. Forum, 2007, vol. 553, pp. 81–86.

    Article  Google Scholar 

  24. C.N. Tomé, R.A. Lebensohn, and C.T. Necker: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2635–48.

    Article  Google Scholar 

  25. I.J. Beyerlein, R.A. Lebensohn, and C.N. Tomé: Mater. Sci. Eng., 2003, vol. 345, pp. 122–38.

    Article  Google Scholar 

  26. P.S. Bate and Y.G. An: Scripta Mater., 2004, vol. 51, pp. 973–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported at Carnegie Mellon University by the National Institute of Standards & Technology under Award No. 70NANB8H8038. Use of facilities provided by the Higher Education Program, Intel Corporation, and by the MRSEC, CMU, under NSF Grant No. DMR-0520425 is also gratefully acknowledged. Use of the VPFFT code from Ricardo Lebensohn, Los Alamos National Laboratory, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Hu.

Additional information

Manuscript submitted July 15, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, L., Rollett, A.D., Iadicola, M. et al. Constitutive Relations for AA 5754 Based on Crystal Plasticity. Metall Mater Trans A 43, 854–869 (2012). https://doi.org/10.1007/s11661-011-0927-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0927-1

Keywords

Navigation