Skip to main content
Log in

Ballistic Impact Properties of Zr-Based Amorphous Alloy Composites Reinforced with Woven Continuous Fibers

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study aims at investigating ballistic impact properties of Zr-based amorphous alloy (LM1 alloy) matrix composites reinforced with woven stainless steel or glass continuous fibers. The fiber-reinforced composites with excellent fiber/matrix interfaces were fabricated without pores and misinfiltration by liquid pressing process, and contained 35 to 41 vol pct of woven continuous fibers homogeneously distributed in the amorphous matrix. The woven-STS-continuous-fiber-reinforced composite consisted of the LM1 alloy layer of 1.0 mm in thickness in the upper region and the fiber-reinforced composite layer in the lower region. The hard LM1 alloy layer absorbed the ballistic impact energy by forming many cracks, and the fiber-reinforced composite layer interrupted the crack propagation and blocked the impact and traveling of the projectile, thereby resulting in the improvement of ballistic performance by about 20 pct over the LM1 alloy. According to the ballistic impact test data of the woven-glass-continuous-fiber-reinforced composite, glass fibers were preferentially fragmented to form a number of cracks, and the amorphous matrix accelerated the fragmentation of glass fibers and the initiation of cracks. Because of the absorption process of ballistic impact energy by forming very large amounts of cracks, fragments, and debris, the glass-fiber-reinforced composite showed better ballistic performance than the LM1 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. J. Radin and W. Goldsmith: Int. J. Impact Eng., 1988, vol. 7, pp. 229–59.

    Article  Google Scholar 

  2. J.A. Zukas and D.R. Scheffler: Int. J. Solids Struct., 2001, vol. 38, pp. 3321–28.

    Article  Google Scholar 

  3. X. Chen, N. Chandra, and A.M. Rajendran: Int. J. Solids Struct., 2004, vol. 41, pp. 4635–59.

    Article  Google Scholar 

  4. A. Inoue, N. Nishiyama, and T. Matsuda: Mater. Trans., JIM, 1996, vol. 37, pp. 181–84.

    CAS  Google Scholar 

  5. K.H. Kim, S.W. Lee, J.P. Ahn, E. Fleury, Y.C. Kim, and J.C. Lee: Metall. Mater. Int., 2007, vol. 13, pp. 21–24.

    Article  CAS  Google Scholar 

  6. A. Inoue, T. Zhang, and A. Takenchi: Appl. Phys. Lett., 1997, vol. 71, pp. 464–66.

    Article  CAS  Google Scholar 

  7. A. Inoue: Acta Mater., 2000, vol. 48, pp. 279–306.

    Article  CAS  Google Scholar 

  8. J. Schroers and W.L. Johnson: Phys. Rev. Lett., 2004, vol. 93, p. 255506.

  9. A. Peker and W.L. Johnson: Appl. Phys. Lett., 1993, vol. 63, pp. 2342–44.

    Article  Google Scholar 

  10. S. Jayalakshmi and E. Fleury: Metall. Mater. Int., 2009, vol. 15, pp. 701–11.

    Article  CAS  Google Scholar 

  11. A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, and T. Masumoto: Mater. Trans. JIM, 1993, vol. 34, pp. 1234–37.

    CAS  Google Scholar 

  12. H.-G. Kim and H. Jang: Metall. Mater. Int., 2010, vol. 16, pp. 581–85.

    Article  CAS  Google Scholar 

  13. K. Moldal, T. Ohkubo, T. Toyama, Y. Nagai, M. Hasegawa, and K. Hono: Acta Mater., 2008, vol. 56, pp. 5329–39.

    Article  Google Scholar 

  14. Y.B. Wang, H.F. Li, Y.F. Zheng, S.C. Wei, and M. Li: Appl. Phys. Lett., 2010, vol. 96, p. 251909.

  15. T.C. Hufnagel, C. Fan, R.T. Ott, J. Li, and S. Brennan: Intermetallics, 2002, vol. 10, pp. 1163–66.

    Article  CAS  Google Scholar 

  16. W.L. Johnson, J. Lu, and M.D. Demetriou: Intermetallics, 2002, vol. 10, pp. 1039–46.

    Article  CAS  Google Scholar 

  17. J. Lu, G. Ravichandran, and W.L. Johnson: Acta Mater., 2003, vol. 51, pp. 3429–43.

    Article  CAS  Google Scholar 

  18. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi: Scripta Mater., 2002, vol. 46, pp. 43–47.

    Article  CAS  Google Scholar 

  19. N. Nagendra, U. Ramamurty, T.T. Goh, and Y. Li: Acta Mater., 2000, vol. 48, pp. 2603–15.

    Article  CAS  Google Scholar 

  20. L.-Q. Xing, Y. Li, K.T. Ramesh, J. Li, and T.C. Hufnagel: Phys. Rev. B, 2001, vol. 64, p. 180201.

  21. J.G. Lee, D.-G. Lee, S. Lee, and N.J. Kim: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3753–61.

    Article  CAS  Google Scholar 

  22. T.G. Nieh, C. Schuh, J. Wadsworth, and Y. Li: Intermetallics, 2002, vol. 10, pp. 1177–82.

    Article  CAS  Google Scholar 

  23. C.C. Hays, C.P. Kim, and W.L. Johnson: Phys. Rev. Lett., 2000, vol. 84, pp. 2901–04.

    Article  CAS  Google Scholar 

  24. C.T. Liu, L. Hearherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, and A. Inoue: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1811–20.

    Article  CAS  Google Scholar 

  25. C. Fan, C. Li, A. Inoue, and V. Haas: Phys. Rev. B, 2000, vol. 61B, pp. R3761–R3763.

    Article  Google Scholar 

  26. H.T. Jeong, W. Yook, B.J. Kim, W.T. Kim, and D.H. Kim: Metall. Mater. Int., 2010, vol. 16, pp. 517–22.

    Article  CAS  Google Scholar 

  27. H. Choi-Yim, R. Busch, U. Koster, and W.L. Johnson: Acta Mater., 1999, vol. 47, pp. 2455–62.

    Article  CAS  Google Scholar 

  28. M.U. Kim, J.P. Ahn, H.K. Seok, E. Fleury, H.J. Chang, D.H. Kim, P.R. Cha, and Y.C. Kim: Metall. Mater. Int., 2009, vol. 15, pp. 193–96.

    Article  CAS  Google Scholar 

  29. O.J. Kwon, Y.C. Kim, K.B. Kim, Y.K. Lee, and E. Fleury: Metall. Mater. Int., 2006, vol. 12, pp. 207–13.

    Article  CAS  Google Scholar 

  30. H. Choi-Yim and W.L. Johnson: Appl. Phys. Lett., 1997, vol. 71, pp. 3808–10.

    Article  CAS  Google Scholar 

  31. D.H. Bae, H.K. Lim, S.H. Kim, D.H. Kim, and W.T. Kim: Acta Mater., 2002, vol. 50, pp. 1749–59.

    Article  CAS  Google Scholar 

  32. Y.K. Xu and J. Xu: Scripta Mater., 2003, vol. 49, pp. 843–48.

    Article  CAS  Google Scholar 

  33. R.D. Corner, R.B. Dandliker, and W.L. Johnson: Acta Mater., 1998, vol. 46, pp. 6089–6102.

    Article  Google Scholar 

  34. P. Wadhwa, J. Heinrich, and R. Busch: Scripta Mater., 2006, vol. 56, pp. 73–76.

    Google Scholar 

  35. S. Gonzalez, J Sort, D.V. Louzquine-Luzgin, J.H. Perepezko, M.D. Baro, and A. Inoue: Intermetallics, 2010, vol. 18, pp. 2377–84.

    Article  CAS  Google Scholar 

  36. G. He, J. Eckert, W. Löser, and L. Schultz: Nat. Mater., 2003, vol. 2, pp. 33–37.

    Article  CAS  Google Scholar 

  37. Y.H. Jang, S.S. Kim, S.K. Lee, D.H. Kim, and M.K. Um: Compos. Sci. Technol., 2005, vol. 65, pp. 781–84.

    CAS  Google Scholar 

  38. S.B. Lee, K. Matsunaga, Y. Ikuhara, and S.K. Lee: Mater. Sci. Eng. A, 2007, vols. A449–A451, pp. 778–81.

    Google Scholar 

  39. W.H. Wang, C. Dong, and C.H. Shek: Mater. Sci. Eng. R, 2004, vol. R44, pp. 45–89.

    Article  CAS  Google Scholar 

  40. F.T. Wallenberger and P.A. Bingham: Fiberglass and Glass Technology, Springer, New York, NY, 2010, p. 208.

    Book  Google Scholar 

  41. J.G. Lee, D.G. Lee, S. Lee, K. Cho, I.M. Park, and N.J. Kim: Mater. Sci. Eng. A, 2005, vol. A309, pp. 427–36.

    Google Scholar 

  42. Q. Wei, N Wanderka, P. Schubert-Bischoff, M.-P. Macht, and S. Friedrich: J. Mater. Res., 2000, vol. 15, pp. 1729–34.

    Article  CAS  Google Scholar 

  43. S.-B. Lee, S.-K. Lee, S. Lee, and N.J. Kim: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 763–71.

    Article  CAS  Google Scholar 

  44. M. Guden, U. Yildirim, and I.W. Hall: Polym. Test., 2004, vol. 23, pp. 719–25.

    Article  CAS  Google Scholar 

  45. K. Lee, D.-H. Nam, S. Lee, and N.J. Kim: Surf. Coat. Technol., 2006, vol. 201, pp. 1620–28.

    Article  CAS  Google Scholar 

  46. M.F. Kanninen: Advanced Fracture Mechanics, Oxford University Press, New York, 1985, pp. 271–74.

    Google Scholar 

  47. B.A. Gama, T.A. Bogetti, B.K. Fink, T.D. Claar, H.H. Eifert, and J.W. Gillespie: Compos. Struct., 2001, vol. 52, pp. 381–95.

    Article  Google Scholar 

  48. S.-B. Lee, K. Lee, S.-K. Lee, and S. Lee: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3159–70.

    Article  CAS  Google Scholar 

  49. D. Sherman: Int. J. Impact Eng., 2000, vol. 24, pp. 313–28.

    Article  Google Scholar 

  50. H. Chang, J. Binner, R. Higginson, P. Myers, P. Webb, and G. King: J. Mater. Sci., 2011, vol. 46, pp. 5237–44.

    Article  CAS  Google Scholar 

  51. D. Sherman and T. Ben-Shushan: Int. J. Impact Eng., 1998, vol. 21, pp. 245–65.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agency for Defense Development (Grant No. ADD-08-09-01), Korea. The authors are grateful to Dr. Paul C. Kim, POSTECH, for their helpful discussion on the fabrication of the fiber-reinforced composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted April 25, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, G.S., Son, CY., Lee, SB. et al. Ballistic Impact Properties of Zr-Based Amorphous Alloy Composites Reinforced with Woven Continuous Fibers. Metall Mater Trans A 43, 870–881 (2012). https://doi.org/10.1007/s11661-011-0915-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0915-5

Keywords

Navigation