Skip to main content
Log in

Phase Identification and Internal Stress Analysis of Steamside Oxides on Plant Exposed Superheater Tubes

  • Symposium: Neutron and X-Ray Studies of Advanced Materials IV
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

During long-term, high-temperature exposure of superheater tubes in thermal power plants, various oxides are formed on the inner side (steamside) of the tubes, and oxide spallation is a serious problem for the power plant industry. Most often, oxidation in a steam atmosphere is investigated in laboratory experiments just mimicking the actual conditions in the power plant for simplified samples. On real plant-exposed superheater tubes, the steamside oxides are solely investigated microscopically. The feasibility of X-ray diffraction for the characterization of steamside oxidation on real plant-exposed superheater tubes was proven in the current work; the challenges for depth-resolved phase analysis and phase-specific residual stress analysis at the inner side of the tubes with concave surface curvature are discussed. Essential differences between the steamside oxides formed on two different steels typically applied for superheaters, ferritic-martensitic X20CrMoV12-1 and lean austenitic stainless steel TP347H, respectively, are revealed by X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.G. Wright, A.S. Sabau, and R.B. Dooley: Mater. Sci. Forum, 2008, vols. 595–598, pp. 387-95.

    Article  Google Scholar 

  2. S.R.J. Saunders and L.N. McCartney: Mater. Sci. Forum, 2006, vols. 522–523, pp. 119-28.

    Article  Google Scholar 

  3. O.H. Larsen, R.B. Frandsen, and R. Blum: VGB Power Tech., 2004, vol. 84, pp. 89-96.

    CAS  Google Scholar 

  4. A.N. Hansson and M. Montgomery: Mater. Sci. Forum, 2006, vols. 522–523, pp. 181-88.

    Article  Google Scholar 

  5. A.N. Hansson, M. Montgomery, and M.A.J. Somers: Oxid. Met., 2009, vol. 71, pp. 201-18.

    Article  CAS  Google Scholar 

  6. J. Jianmin, M. Montgomery, O.H. Larsen, and S.A. Jensen: Mater. Corros., 2005, vol. 56, pp. 542-49.

    Article  CAS  Google Scholar 

  7. I.G. Wright and R.B. Dooley: Int. Mater. Rev., 2010, vol. 55, pp. 129-67.

    Article  CAS  Google Scholar 

  8. A.N. Hansson and M. Montgomery: Proc. of 9 th Liege Conf.: Materials for Advanced Power Engineering, Eds. J. Lecomte-Beckers, Q. Contrepois, T. Beck, and B. Kuhn, Forschungszentrum Jülich GmbH, Jülich, Germany, 2010, pp. 1022–31.

  9. M. Montgomery, A.N. Hansson, T. Vilhelmse, and S.A. Jensen: Mater. Corros., 2011, in press.

  10. M.M. Rahman, J. Purbolaksono, and J. Ahmad: Eng. Fail. Anal., 2010, vol. 17, pp. 1490-94.

    Article  CAS  Google Scholar 

  11. D.L.C. Neves, J.R de Carvalho Seixas, E.B. Tinoco, A. da Cunha Rocha, and I. de Cerqueira Abud: Mater. Res., 2004, vol. 7, pp. 155–61.

  12. A.S. Sabau and I.G. Wright: Oxid. Met., 2010, vol. 73, pp. 467-92.

    Article  CAS  Google Scholar 

  13. A.S. Sabau and I.G. Wright: J. Appl. Phys., 2009, vol. 106, pp. 023503-1–023503-8.

    Article  Google Scholar 

  14. M. Montgomery, S.A. Jensen, A. Hansson, O. Biede, and T. Vilhelmsen: Proc. of 9 th Liege Conf.: Materials for Advanced Power Engineering, Eds. J. Lecomte-Beckers, Q. Contrepois, T. Beck, and B. Kuhn, Forschungszentrum Jülich GmbH, Jülich, Germany, 2010, pp. 1096–1105.

  15. J. Zurek, E. Wessel, L. Niewolak, F. Schmitz, T.-U. Kern, L. Singheiser, and W.J. Quadakkers: Corros. Sci., 2004, vol. 46, pp. 2301-17.

    Article  CAS  Google Scholar 

  16. W. Christl, A. Rahmel, and M. Schütze: Oxid. Met., 1989, vol. 31, pp. 35-69.

    Article  CAS  Google Scholar 

  17. D.R. Clarke: Acta Mater., 2003, vol. 51, pp. 1393-1407.

    Article  CAS  Google Scholar 

  18. F.N. Rhines and J.S. Wolf: Metall. Trans., 1970, vol. 1, pp. 1701-10.

    Article  CAS  Google Scholar 

  19. C. Zhou, H. Ma, and L. Wang: Oxid. Met., 2009, vol. 71, pp. 335-41.

    Article  CAS  Google Scholar 

  20. H.E. Evans: Int. Mater. Rev., 1995, vol. 40, pp. 1-40.

    Article  CAS  Google Scholar 

  21. R. Krishnamurthy and D.J. Srolovitz: Acta Mater., 2004, vol. 52, pp. 3761-80.

    Article  CAS  Google Scholar 

  22. V. Hauk: Structural and Residual Stress Analysis by Non-Destructive Methods, Elsevier, Atlanta, GA, 1997.

    Google Scholar 

  23. M. Schütze: Protective Oxide Scales and their Breakdown, Series on Corrosion and Protection, Wiley, New York, NY, 1991.

    Google Scholar 

  24. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, vol. 11, Springer-Verlag, Germany, 1979.

  25. X. Luo, R. Tang, C. Long, Z. Miao, Q. Peng, and C. Li: Nucl. Eng. Tech., 2008, vol. 40, pp. 147-54.

    Article  CAS  Google Scholar 

  26. H.J. Yearian, J.M. Kortright, and R.H. Langenheim: J. Chem. Phys., 1954, vol. 22, pp. 1196-98.

    Article  CAS  Google Scholar 

  27. G.C. Allen, K.R. Hallam, and J.A. Jutson: Powder Diffr., 1995, vol. 10, pp. 214-20.

    CAS  Google Scholar 

  28. P. Perrot: Landolt-Börnstein, New Series IV/11D3, Springer, 2008, pp. 1–27.

  29. A.N. Hansson, K. Pantleon, F.B. Grumsen, and M.A.J. Somers: Oxid. Met., 2010, vol. 73, pp. 289-309.

    Article  CAS  Google Scholar 

  30. Z.-F. Hu and Z.-G. Yang: Mater. Sci. Eng. A, 2004, vol. 383, pp. 224-28.

    Article  Google Scholar 

  31. D.A. Skobir, M. Godez, A. Nagode, and M. Jenko: Surf. Interface Anal., 2010, vol. 42, pp. 717-21.

    Article  CAS  Google Scholar 

  32. M. Francois, B. Dionnet, J.M. Sprauel, and F. Nardou: J. Appl. Cryst., 1995, vol. 28, pp. 761-67.

    Article  CAS  Google Scholar 

  33. T. Oguri, K. Murata, and Y. Sato: J. Strain Anal., 2003, vol. 38, pp. 459-68.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Värmeforsk (Thermal Engineering Research Association) Sweden, for financial support (project M4-312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Pantleon.

Additional information

Manuscript submitted June 21, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantleon, K., Montgomery, M. Phase Identification and Internal Stress Analysis of Steamside Oxides on Plant Exposed Superheater Tubes. Metall Mater Trans A 43, 1477–1486 (2012). https://doi.org/10.1007/s11661-011-0874-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0874-x

Keywords

Navigation