Skip to main content
Log in

A Kinetics Model for Martensite Transformation in Plain Carbon and Low-Alloyed Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An empirical martensite kinetics model is proposed that both captures the sigmodial transformation behavior for alloy steels and remains computationally efficient. The model improves on the Koistinen and Marburger model and the van Bohemen and Sietsma model with a function that better represents the transformation rate, especially during the early stages. When compared with existing models, the proposed model exhibits better predictions of volume fraction of martensite. The proposed model also predicts various other transformation properties accurately, such as M90 temperatures and retained austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Payson and C.H. Savage: Trans. AIME, 1944, vol. 33, pp. 261-75.

    Google Scholar 

  2. R.A. Grange and H.M. Stewart: Trans. AIME, 1946, vol. 167, pp. 467-501.

    Google Scholar 

  3. W.H. Harris and M. Cohen: Trans. AIME, 1949, vol. 180, pp. 447-70.

    Google Scholar 

  4. W. Steven and A.G. Haynes: ISIJ Int., 1956, vol. 183, pp. 349-59.

    CAS  Google Scholar 

  5. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59-60.

    Article  Google Scholar 

  6. R. Brook, A.R. Entwisle, and E.F. Ibrahim: ISIJ Int., 1960, vol. 195, pp. 292-98.

    CAS  Google Scholar 

  7. A.R. Entwisle: Metall. Trans., 1971, vol. 2, pp. 2395-407.

    Article  CAS  Google Scholar 

  8. M. Umemoto and W.S. Owen: Met. Trans., 1974, vol. 5, p. 2041.

    Article  CAS  Google Scholar 

  9. J.R.C. Guimarães and J.C. Gomes: Acta Metall., 1978, vol. 26, p. 1591.

    Article  Google Scholar 

  10. S.J. Lee and Y.K. Lee: Mater. Sci. Forum, 2005, vols. 475-9, pp. 3169-72.

    Article  Google Scholar 

  11. A. García-Junceda, C. Capdevila, F.G. Caballero, and C. García de Andrés: Scripta Mater., 2008, vol. 58, pp. 134-37.

    Article  Google Scholar 

  12. H.S. Yang and H.K.D.H. Bhadeshia: Scripta Mater., 2009, vol. 60, pp. 493-95.

    Article  CAS  Google Scholar 

  13. E. Hornbogen: Fractal Dimensions of Martensitic Microstructures,The 1st European Symposium on Martensitic Transformations, Bochum, Germany, 1989.

  14. S.J. Lee and Y.K. Lee: 5th Pacific Rim Int. Conf. Advanced Materials and Processing, Beijing, China, 2004.

  15. S.M.C. van Bohemen and J. Sietsma: Mater. Sci. Tech., 2009, vol. 25, pp. 1009-12.

    Article  Google Scholar 

  16. S.J. Lee and Y.K. Lee: Acta Mater., 2008, vol. 56, pp. 1482-90, also Acta Mater., 2009, vol. 57, p. 2605.

    Article  CAS  Google Scholar 

  17. S.J. Lee, M.T. Lusk, and Y.K. Lee: Acta Mater., 2007, vol. 55, pp. 875-82.

    Article  CAS  Google Scholar 

  18. C. Capdevila, F.G. Caballero, and C. García de Andrés: ISIJ Int., 2002, vol. 42, pp. 894-902.

    Article  CAS  Google Scholar 

  19. H.Y. Yu: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2499-2506.

    Article  CAS  Google Scholar 

  20. American Society for Metals: Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Materials Park, OH, 1977.

    Google Scholar 

  21. A.R. Marder and G. Krauss: Trans. ASM, 1967, vol. 60, pp. 651-60.

    CAS  Google Scholar 

  22. T.G. Digges: Trans. ASM, 1940, vol. 28, pp. 575-600.

    CAS  Google Scholar 

  23. A.B. Greninger: Trans. AIME, 1942, vol. 30, pp. 1-26.

    CAS  Google Scholar 

  24. A.K. Jena and M.C. Chaturvedi: Phase Transformations in Materials, Prentice-Hall, Englewood. Cliffs, NJ, 1992.

  25. H. Kitahara, N. Tsuji, and Y. Minamino: Mater. Sci. Forum, 2006, vols. 503–504, pp. 913–18.

  26. G.B. Olson and M. Cohen: Metall. Trans. A, 1975, vol. 6A, pp. 791-95.

    CAS  Google Scholar 

Download references

Acknowledgment

The support of the Advanced Steel Processing and Products Research Center at Colorado School of Mines is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Jae Lee.

Additional information

Manuscript submitted July 15, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SJ., Van Tyne, C.J. A Kinetics Model for Martensite Transformation in Plain Carbon and Low-Alloyed Steels. Metall Mater Trans A 43, 422–427 (2012). https://doi.org/10.1007/s11661-011-0872-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0872-z

Keywords

Navigation