Skip to main content
Log in

Oxidation Behavior of Nb-20Mo-15Si-25Cr and Nb-20Mo-15Si-25Cr-5B Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nb-20Mo-15Si-25Cr (25Cr alloy) and Nb-20Mo-15Si-25Cr-5B (25Cr/5B alloy) alloys have been subjected to oxidation in air for 24 hours from 973 K to 1673 K (700 °C to 1400 °C). Even though B additions do not improve oxidation resistance at temperatures higher than 1473 K (1200 °C), the lower temperature oxidation resistance is superior with B by influencing the microstructure. Porous oxide scale development at lower temperatures has been attributed to the dominant growth of Nb2O5 and the vaporization of MoO3. An intermediate oxidation layer is developed between the scale and the metal for the 25Cr/5B alloy at temperatures above 1173 K (900 °C). Scale densification at elevated temperatures results in higher stress development as a result of the mismatch of coefficients of thermal expansion, ultimately resulting in oxide spallation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan: Science, 2002, vol. 296, pp. 280-84.

    Article  CAS  Google Scholar 

  2. J.H. Perepezko: Science, 2010, vol. 326, pp. 1068-69.

    Article  Google Scholar 

  3. M. Akinc, M.K. Meyer, M.J. Kramer, A.J. Thom, J.J. Huebsch, and B. Cook: Mater. Sci. Eng. A, 1999, vol. 261, pp. 16-23.

    Article  Google Scholar 

  4. M.K. Meyer and M. Akinc: J. Am. Ceram. Soc., 1986, vol. 79, pp. 938-44.

    Article  Google Scholar 

  5. M.K Meyer and M. Akinic: J. Am. Ceram. Soc., 1996, vol. 79, pp. 2763-66.

    Article  CAS  Google Scholar 

  6. M.K. Meyer, A.J. Thom, and M. Akinc: Intermetallics, 1999, vol. 7, pp. 153-62.

    Article  CAS  Google Scholar 

  7. K. Ito, T. Murakami, K. Adachi, and M. Yamaguchi: Intermetallics, 2003, vol. 11, pp. 763-72.

    Article  CAS  Google Scholar 

  8. M.G. Mendiratta, T.A. Parthasarathy, and D.M. Dimiduk: Intermetallics, 2002, vol. 10, pp. 225-35.

    Article  CAS  Google Scholar 

  9. V. Supatarawanich, D.R. Johnson, and C.T. Liu: Mater. Sci. Eng. A, 2003, vol. 344, pp. 328-39.

    Article  Google Scholar 

  10. S. Paswan, R. Mitra, and S.K. Roy: Mater. Sci. Eng. A, 2006, vol. 424, pp. 251-65.

    Article  Google Scholar 

  11. J.H. Schneibel, R.O. Ritchie, J.J. Kruzic, and P.F. Tortorelli: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 525-31.

    Article  CAS  Google Scholar 

  12. G.R. Belton and A.S. Jordan: J. Phys. Chem., 1965, vol. 69, pp. 2065-71.

    Article  CAS  Google Scholar 

  13. T. Murakami, C.N. Xu, A. Kitahara, M. Kawahara, Y. Takahashi, H. Inui, and M. Yamaguchi: Intermetallics, 1999, vol. 7, pp. 1043-48.

    Article  CAS  Google Scholar 

  14. K.S. Chan: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 589-97.

    Article  CAS  Google Scholar 

  15. K. Chattopadhyay, R. Mitra, and K.K. Ray: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 577-92.

    Article  CAS  Google Scholar 

  16. H. El Kadiri, R. Molis, Y. Bienvenu, M.F. Horstemeyer (2005). Oxid. Met 64:63-97.

    Article  CAS  Google Scholar 

  17. C.H. Wu: J. Mech. Phys. Solids, 2001, vol. 49, pp. 1771-94.

    Article  Google Scholar 

  18. H. El Kadiri, M.F. Horstemeyer, D.J. Bammann (2008) J. Mech. Phys. Solids 56:3392-3415.

    Article  CAS  Google Scholar 

  19. Y. Liu, M.J. Kramer, A.J. Thom, and M. Akinc: Metall. Mater. Trans. A, 2006, vol. 36A, pp. 601-07.

    Google Scholar 

  20. V. Behrani, A.J. Thom, M.J. Kramer, and M. Akinc: Intermetallics, 2006, vol. 14, pp. 24-32.

    Article  CAS  Google Scholar 

  21. J. Ventura, B. Portillo, S.K. Varma, and R.N. Mahapatra: ECS Trans., 2009, vol. 16, pp. 157-66.

    Article  CAS  Google Scholar 

  22. F. Holtzberg, A. Reisman, M. Berry, and M. Berkenblit: J. Am. Chem. Soc., 1965, vol. 79, pp. 2039-43.

    Article  Google Scholar 

  23. M. Skeldon, J.M. Calvert, D.G. Lees (1986). Oxid. Met. 28:109-25.

    Article  Google Scholar 

  24. I. Barin: Thermochemical Data of Pure Substances, 2nd ed., Wiley VCH, Weinhiem, Germany, 1993, pp. 573-1505.

    Google Scholar 

  25. Y.-J. Hsiao, Y.-H. Chang, T.-H. Fang, Y.-S.Chang, Y.-L. Chai (2006). J. Alloys Compd 421:240-46.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the Office of Naval Research (ONR) through Grant N00014-08-1-0506. Dr. David Shifler is the program manager.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra K. Varma.

Additional information

Manuscript submitted April 9, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portillio, B.I., Varma, S.K. Oxidation Behavior of Nb-20Mo-15Si-25Cr and Nb-20Mo-15Si-25Cr-5B Alloys. Metall Mater Trans A 43, 147–154 (2012). https://doi.org/10.1007/s11661-011-0861-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0861-2

Keywords

Navigation