Skip to main content

Advertisement

Log in

Improvement in Fatigue Strength of Biomedical β-type Ti–Nb–Ta–Zr Alloy While Maintaining Low Young’s Modulus Through Optimizing ω-Phase Precipitation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The improvement in fatigue strength, with maintenance of a low Young’s modulus, in a biomedical β-type titanium alloy, Ti–29Nb–13Ta–4.6Zr (TNTZ), by thermomechanical treatment was investigated. A short aging time at an ω-phase-forming temperature combined with severe cold rolling was employed. A fine ω phase is observed in TNTZ subjected to this thermomechanical treatment. Because the rolling texture of β phase is formed by cold rolling, such as the ω phase may be preferentially oriented to a direction that is effective for inhibiting the increase in Young’s modulus. The samples aged at 573 K (300 °C) for 3.6 ks and 10.8 ks after cold rolling exhibit a good balance between a high tensile strength and low Young’s modulus. In the case of the sample aged for 3.6 ks, the tensile strength is improved, although the fatigue strength is not improved significantly. Both the tensile strength and the fatigue strength of the sample aged for 10.8 ks are improved. This fatigue strength is the highest among the TNTZ samples used in the current and in previous studies with Young’s moduli less than 80 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Niinomi: J. Mech. Behav. Biomed. Mater., 2008, vol. 1, pp. 30-42.

    Article  Google Scholar 

  2. J.Y. Rho, T.Y. Tsui, and G.M. Pharr: Biomaterials, 1997, vol. 18, pp. 1325-30.

    Article  CAS  Google Scholar 

  3. P. Zioupos and J.D. Currey: Bone, 1998, vol. 22, pp. 57-66.

    Article  CAS  Google Scholar 

  4. N. Sumitomo, K. Noritake, T. Hattori, K. Morikawa, S. Niwa, K. Sato, and M. Niinomi: J. Mater. Sci. Mater. Med., 2008, vol. 19, pp. 1581-86.

    Article  CAS  Google Scholar 

  5. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro: Mater. Sci. Eng. A, 1998, vol. 243, pp. 244-49.

    Article  Google Scholar 

  6. M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui, and S. Niwa: Mater. Trans., 2002, vol. 43, pp. 2970-77.

    Article  CAS  Google Scholar 

  7. M. Niinomi: Biomaterials, 2003, vol. 24, pp. 2673-83.

    Article  CAS  Google Scholar 

  8. T. Akahori, M. Niinomi, K. Ishimizu, H. Fukui, and A. Suzuki: J. Jpn. Inst. Met., 2003, vol. 67, pp. 652-60.

    CAS  Google Scholar 

  9. T. Akahori, M. Niinomi, H. Fukui, M. Ogawa, and H. Toda: Mater. Sci. Eng. C, 2005, vol. 25, pp. 248-54.

    Article  Google Scholar 

  10. T. Akahori, M. Niinomi, A. Noda, H. Toda, H. Hukui, and M. Ogawa: J. Jpn. Inst. Met., 2006, vol. 70, pp. 295-303.

    Article  CAS  Google Scholar 

  11. A. Noda: Master’s Thesis, Toyohashi University of Technology, Toyohashi, Japan, 2005.

  12. T. Furuhara, T. Maki, and T. Makino: J. Mater. Process. Technol., 2001, vol. 117, pp. 318-23.

    Article  CAS  Google Scholar 

  13. R. Boyer, G. Welsch, and E.W. Collings: Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, 1994.

  14. Y.L. Hao, M. Niinomi, D. Kuroda, K. Fukunaga, Y.L. Zhou, R. Yang, and A. Suzuki: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3137-44.

    Article  CAS  Google Scholar 

  15. Y.L. Hao, M. Niinomi, D. Kuroda, K. Fukunaga, Y.L. Zhou, R. Yang, and A. Suzuki: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1007-12.

    Article  CAS  Google Scholar 

  16. M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, X. Feng, and M. Ogawa: Mater. Trans., 2009, vol. 50, pp. 423-26.

    Article  CAS  Google Scholar 

  17. T. Akahori, M. Niinomi, M. Nakai, and H. Tsutsumi: J. Biomech. Sci. Eng., 2009, vol. 4, pp. 345-55.

    Article  Google Scholar 

  18. M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, M. Niinomi, and H. Nakajima: Acta Mater., 2008, vol. 56, pp. 2856-63.

    Article  CAS  Google Scholar 

  19. H. Matsumoto, S. Watanabe, and S. Hanada: Mater. Trans., 2005, vol. 46, pp. 1070-78.

    Article  CAS  Google Scholar 

  20. T. Inamura, H. Hosoda, K. Wakeshima, and S. Miyazaki: Mater. Trans., 2005, vol. 46, pp. 1597-1603.

    Article  CAS  Google Scholar 

  21. M. Nakai, M. Niinomi, T. Akahori, and H. Tsutsumi: Mater. Sci. Forum, 2010, vols. 654–656, pp. 2134–37.

  22. Y.J. Hao, J. Zhu, L. Zhang, J.Y. Qu, and H.S. Ren: Solid State Sci., 2010, vol. 12, pp. 1473-79.

    Article  CAS  Google Scholar 

  23. J.C. Jamieson: Science, 1963, vol. 140, pp. 72-73.

    Article  CAS  Google Scholar 

  24. J.M. Zhang, Y. Zhang, K.W. Xu, and V. Ji: Thin Solid Films, 2007, vol. 515, pp. 7020-24.

    Article  CAS  Google Scholar 

  25. S.K. Sikka, Y.K. Vohra, and R. Chidambaram: Progr. Mater. Sci., 1982, vol. 27, pp. 245-310.

    Article  CAS  Google Scholar 

  26. M.R. Bache and W.J. Evans: Mater. Sci. Eng. A, 2001, vol. 319, pp. 409-14.

    Article  Google Scholar 

  27. W.J. Evans, J.P. Jones, and M.T. Whittaker: Int. J. Fatigue, 2005, vol. 27, pp. 1244-50.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially in part by the Global COE Program “Materials Integration International Center of Education and Research, Tohoku University” from Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan; the Inter-University Cooperative Research Program “Highly-functional Interface Science: Innovation of Biomaterials with Highly-Functional Interface to Host and Parasite, Tohoku University and Kyushu University” from MEXT of Japan; and the Industrial Technology Research Grant Program in 2009 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Nakai.

Additional information

Manuscript submitted January 31, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakai, M., Niinomi, M. & Oneda, T. Improvement in Fatigue Strength of Biomedical β-type Ti–Nb–Ta–Zr Alloy While Maintaining Low Young’s Modulus Through Optimizing ω-Phase Precipitation. Metall Mater Trans A 43, 294–302 (2012). https://doi.org/10.1007/s11661-011-0860-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0860-3

Keywords

Navigation