Skip to main content
Log in

Effect of Proximity and Dimension of Two Artificial Pitting Holes on the Fatigue Endurance of Aluminum Alloy AISI 6061-T6 Under Rotating Bending Fatigue Tests

  • Symposium: Fatigue & Corrosion Damage in Metallic Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work deals with the study of the two artificial pitting holes effects, caused by their dimensions and proximity, on the fatigue endurance of aluminum alloy AISI 6061-T6 under rotating bending fatigue tests. Stress concentration induced by artificial pitting holes is analyzed and correlated with the experimental fatigue life. It is found that the stress concentration increases exponentially when the two pitting holes approach, and this induces an important reduction in the fatigue life. Concerning the diameter variation of one pitting in regard to the second, no important influence was observed on fatigue life for a given separation between them; this implies that the separation between the two artificial pitting holes and the associated stress concentration is the principal parameter on the fatigue life under these conditions. Finally, results are discussed and conclusions are presented involving the fatigue life, proximity, and dimension of pitting holes, stress concentration factor, and fracture surfaces where the failure origin is identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.K. Toh and S. Kanno: J. Mater. Sci., 2004, vol. 39 (10), pp. 3497–3500.

    Article  CAS  Google Scholar 

  2. S.J. Pawel and E.T. Manneschmidt: J. Nucl. Mater., 2003, vol. 318, pp. 355–64.

    Article  CAS  Google Scholar 

  3. J.R. Davis, ed.: Aluminum and Aluminum Alloys, ASM Specialty Handbook, ASM International, 1994.

  4. P. Traverso, R. Spiniello, and L. Monaco: Surf. Interface Anal., 2002, vol. 34 (1), pp. 185–88.

    Article  CAS  Google Scholar 

  5. R. Braun, U. Alfaro Mercado, and G. Biallas: Mater. Sci. Forum, 2006, vol. Aluminium Alloys 2006-ICAA10, pp. 1113–18.

  6. W.L. Xu, T.M. Yue, H.C. Man, and C.P. Chan: Surf. Coat. Technol., 2006, vol. 200, pp. 5077–86.

    Article  CAS  Google Scholar 

  7. S. Ishihara, Z.Y. Nan, A.J. McEvily, T. Goshima, and S. Sunada: Int. J. Fatigue, 2008, vol. 30, pp. 1659–68.

    Article  CAS  Google Scholar 

  8. D.L. DuQuesnay, P.R. Underhill, and H.J. Britt: Int. J. Fatigue, 2003, vol. 25, pp. 371–77.

    Article  CAS  Google Scholar 

  9. H. Allachi, F. Chaouket, and K. Draoui: J. Alloys Compd., 2010, vol. 491, pp. 223–29.

    Article  CAS  Google Scholar 

  10. G.M. Domínguez Almaraz, V.H. Mercado Lemus, and J.J. Villalón López: Procedia Eng., 2010, vol. 2, pp. 805–13.

    Article  Google Scholar 

  11. M. Cerit, K. Genel, and S. Eksi: Eng. Failure Analysis, 2009, vol. 16, pp. 2467–72.

    Article  CAS  Google Scholar 

  12. W.D. Pilkey and D.F. Pilkey: Peterson’s Stress Concentrations Factors, 3rd ed., John Wiley & Sons, New York, NY, 2007.

  13. P.C Paris, T. Palin-Luc, H. Tada, and N. Santier: Crack Paths 2009, International Conference on CRACK PATHS (CP 2009), Proceedings, Vicenza, Italy, Sept. 23–25, 2009, pp. 495–502.

  14. S.I. Rokhlin, J.-Y. Kim, H. Nagy, and B. Zoofan: Eng. Fract. Mech.,1999, vol. 62, pp. 425–44.

    Article  Google Scholar 

  15. R. Pérez Mora, G. Domínguez Almaraz, T. Palin-Luc, C. Bathias, and J.L. Arana (2010) Key Eng. Mater., 449: 104–13.

    Article  Google Scholar 

  16. M.R. Bayoumi, A.A. Ismail, and A.K. Abd El Latif (1996) Eng. Fract. Mech. 53: 141–51.

    Article  Google Scholar 

  17. K. Sun: SPE Product. Facil., 2005, vol. 20, pp. 334–39.

    CAS  Google Scholar 

  18. G.S. Chen, K.-C. Wan, M. Gao, R.P. Wei, and T.H. Flournoy: Mater. Sci. Eng. A, 1996, vol. 219, pp. 126–32.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the University of Michoacan (UMSNH) for the facilities received in the development of this work. A particular mention of gratitude is extended to CONACYT (National Counsel for Science and Technology, Mexico City) for the financial support destined to this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Dominguez Almaraz.

Additional information

Manuscript submitted March 22, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dominguez Almaraz, G.M., Mercado Lemus, V.H. & Villalon Lopez, J.J. Effect of Proximity and Dimension of Two Artificial Pitting Holes on the Fatigue Endurance of Aluminum Alloy AISI 6061-T6 Under Rotating Bending Fatigue Tests. Metall Mater Trans A 43, 2771–2776 (2012). https://doi.org/10.1007/s11661-011-0799-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0799-4

Keywords

Navigation