Skip to main content
Log in

Measuring Single-Crystal Diffuse Neutron Scattering on the Wombat High-Intensity Powder Diffractometer

  • Symposium: Neutron and X-Ray Studies of Advanced Materials IV
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Single-crystal diffuse scattering was collected on the Wombat high-intensity powder diffractometer at the OPAL reactor at the Bragg Institute. The difficulty in measuring diffuse scattering comes from its relatively low intensity compared to the Bragg peaks, a factor of \(10^{3}\) to \(10^{4}\) smaller. Wombat allows collection of diffuse scattering due to its high intensity and large two-dimensional detector. Diffuse scattering data from yttria-stabilized cubic zirconia (YCSZ, \(\hbox{Y}_2\hbox{O}_3\) stabilized \(\hbox{ZrO}_2\)) and \(\hbox{PbZn}_{1/3}\hbox{Nb}_{2/3}\hbox{O}_3\) (PZN) were successfully collected, the latter at a range of temperatures. The data were processed, normalized, and background subtracted to reconstruct flat reciprocal space sections with a minimum of artifacts. The strategies used to tackle the collection of neutron diffuse scattering and the way in which they are implemented will be discussed. The results show that the neutron powder diffractometer with a continuous detector is capable of collecting high-quality diffuse scattering data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.A. Keen, M.J. Gutmann, C.C. Wilson, J. Appl. Crystall., 2006, vol. 39 (5), pp. 714–22

  2. T.-.R. Welberry, M.J. Gutmann, H. Woo, D.J. Goossens, G.Y. Xu, C. Stock, W. Chen, Z.G. Ye, J. Appl. Crystall. 38, 639–47 (2005)

    Article  CAS  Google Scholar 

  3. K. Ohoyama, T. Kanouchi, K. Nemoto, M. Ohashi, T. Kajitani, Y. Yamaguchi, Phys. B: Condens. Matter 241(243), 213–15 (1997)

    Article  Google Scholar 

  4. T.R. Welberry, D.J. Goossens, D.R. Haeffner, P.L. Lee, J. Almer, J. Synch. Rad. 10, 284–86 (2003)

    Article  CAS  Google Scholar 

  5. T. Weber, M.A. Estermann, H.B. Bürgi, Acta Crystallogr. B 57, 579–90 (2001)

    Article  CAS  Google Scholar 

  6. M.A. Estermann, W. Steurer, Phase Transit. 67, 165–95 (1998)

    Article  CAS  Google Scholar 

  7. S. Scheidegger, M.A. Estermann, W. Steurer, J. Appl. Cryst. 33, 35–48 (2000)

    Article  CAS  Google Scholar 

  8. T.R. Welberry, D.J. Goossens, A.P. Heerdegen, P.L. Lee, Z. Kristallogr. 220(12), 1052–58 (2005)

    Article  CAS  Google Scholar 

  9. A.J. Studer, M.E. Hagen, T.J. Noakes, Phys. B: Condens. Matter 385(386), 1013–15 (2006)

    Article  Google Scholar 

  10. T.R. Welberry, D.J. Goossens, and M.J. Gutmann: Phys. Rev. B., 2006, vol. 74 (22), p. 224108

  11. T.R. Welberry, D.J. Goossens, J. Appl. Crystallogr. 41(3), 606–14 (2008)

    Article  CAS  Google Scholar 

  12. P.M. Gehring, H. Hiraka, C. Stock, S.-H. Lee, W. Chen, Z.-G. Ye, S.B. Vakhrushev, Z. Chowdhuri, Phys. Rev. B. 79(22), 224109 (2009)

    Article  Google Scholar 

  13. M. Paściak, M. Wołcyrz, and A. Pietraszko: Phys. Rev. B., 2007, vol. 76 (1), p. 014117

  14. T.R. Welberry, R.L. Withers, J.G. Thompson, B.D. Butler, J. Solid State Chem. 100(1), 71–89 (1992)

    Article  CAS  Google Scholar 

  15. T.R. Welberry, B.D. Butler, J.G. Thompson, R.L. Withers, J. Solid State Chem. 106, 461–75 (1993)

    Article  CAS  Google Scholar 

  16. T.R. Welberry, R.L. Withers, S.C. Mayo, J. Solid State Chem. 115(1), 43–54 (1995)

    Article  CAS  Google Scholar 

  17. T. Proffen, R.B. Neder, F. Frey, Acta Crystallogr. Sect. B. 52(1), 59–65 (1996)

    Article  Google Scholar 

  18. T. Proffen, R.B. Neder, F. Frey, W. Assmus, Acta Crystallogr. Sect. B. 49(4), 599–604 (1993)

    Article  Google Scholar 

  19. J.S. Forrester, E.H. Kisi, K.S. Knight, C.J. Howard, J. Phys.: Condens. Matter.18(19), L233–240 (2006)

    Article  CAS  Google Scholar 

  20. J.C. Osborn, T.R. Welberry, J. Appl. Cryst. 23, 476–484 (1990)

    Article  Google Scholar 

  21. W.S. Rasband, ImageJ, http://rsb.info.nih.gov/ij/, 1997–2009.

  22. M.D. Abramoff, P.J. Magelhaes, S.J. Ram, Biophoton. Int. 11, 36–42 (2004)

    Google Scholar 

  23. D.J. Goossens, A.P. Heerdegen, E.J. Chan, T.R. Welberry, Metall. Mater. Trans. A. 42, 23–31 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Australian Research Council for support through its Discovery Projects program and the Australian Institute of Nuclear Science and Engineering for their financial support. DJG would like to thank Dr. A.P. Heerdegen and Professor T.R. Welberry, Research School of Chemistry, Australian National University, for their advice and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Whitfield.

Additional information

Manuscript submitted February 14, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitfield, R.E., Goossens, D.J., Studer, A.J. et al. Measuring Single-Crystal Diffuse Neutron Scattering on the Wombat High-Intensity Powder Diffractometer. Metall Mater Trans A 43, 1423–1428 (2012). https://doi.org/10.1007/s11661-011-0740-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0740-x

Keywords

Navigation