Skip to main content
Log in

Diffuse Scattering as an Aid to the Understanding of Polymorphism in Pharmaceuticals

  • Symposium: Neutron and X-Ray Studies of Advanced Materials IV
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Polymorphism occurs when the same molecular compound can crystallize in more than one distinct crystal structure. Its study is a field of great interest and activity. This is largely driven by its importance in the pharmaceutical industry, but polymorphism is also an issue in the pigments, dyes, and explosives industries. The polymorph formed by a compound generally exerts a strong influence on its solid-state properties. The polymorphic form of a drug molecule may affect the ease of manufacture and processing, shelf life, and most significantly the rate of uptake of the molecule by the human body. They can even vary in toxicity; one polymorph may be safe, while a second may be toxic. In this review of recently published work, we show how diffuse scattering experiments coupled with Monte Carlo (MC) computer modeling can aid in the understanding of polymorphism. Examples of the two common pharmaceuticals, benzocaine and aspirin, both of which are bimorphic, at ambient temperatures, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Bernstein: Polymorphism in Molecular Crystals, International Union of Crystallography Monographs on Crystallography, Oxford University Press, Oxford, United Kingdom, 2002, p. xiv.

  2. K. Knapman: Mod. Drug Discov., 2000, vols. 53–54, pp. 57–60.

  3. A.G. Beasley, T.R. Welberry, D.J. Goossens, and A.P. Heerdegen: Acta Crystallogr. Sect. B-Struct. Sci., 2008, vol. 64, pp. 633–43.

    Article  CAS  Google Scholar 

  4. E.J. Chan and T.R. Welberry: Acta Crystallogr. Sect. B-Struct. Sci., 2010, vol. 66, pp. 260–70.

    Article  CAS  Google Scholar 

  5. E.J. Chan, T.R. Welberry, D.J. Goossens, A.P. Heerdegen, A.G. Beasley, and P.J. Chupas: Acta Crystallogr. Sect. B-Struct. Sci., 2009, vol. 65, pp. 382–92.

    Article  CAS  Google Scholar 

  6. E.J. Chan, T.R. Welberry, A.P. Heerdegen, and D.J. Goossens: Acta Crystallogr. B, 2010, vol. 66, pp. 696–707.

    Article  CAS  Google Scholar 

  7. T.R. Welberry: Diffuse X-Ray Scattering and Models of Disorder, IUCr Monographs on Crystallography, Oxford University Press, Oxford, United Kingdom, 2004.

  8. T.R. Welberry and B.D. Butler: J. Appl. Crystallogr., 1994, vol. 27, pp. 205–31.

    Article  CAS  Google Scholar 

  9. T.R. Welberry: Acta Crystallogr. Sect. A, 2001, vol. 57, pp. 244–55.

    Article  CAS  Google Scholar 

  10. T.R. Welberry, D.J. Goossens, A.J. Edwards, and W.I.F. David: Acta Crystallogr. Sect. A, 2001, vol. 57, pp. 101–09.

    Article  CAS  Google Scholar 

  11. A.I. Kitaigorodskii: Molecular Crystals And Molecules, Physical Chemistry, Academic Press, New York, NY, 1973, p. xii.

  12. J.E. Lennard-Jones: Proc. R. Soc. London A, 1924, vol. 106, pp. 463–77.

    Article  Google Scholar 

  13. R.A. Buckingham: Proc. R. Soc. London A, 1938, vol. 168, pp. 264–83.

    Article  CAS  Google Scholar 

  14. D.S. Coombes, C.R.A. Catlow, J.D. Gale, A.L. Rohl, and S.L. Price: Cryst. Growth Des., 2005, vol. 5, pp. 879–85.

    Article  CAS  Google Scholar 

  15. D.S. Coombes, S.L. Price, D.J. Willock, and M. Leslie: J. Phys. Chem., 1996, vol. 100, pp. 7352–60.

    Article  CAS  Google Scholar 

  16. E.J. Chan, T.R. Welberry, D.J. Goossens, and A.P. Heerdegen: J. Appl. Crystallogr., 2010, vol. 43, pp. 913–15.

    Article  CAS  Google Scholar 

  17. T.R. Welberry, T. Proffen, and M. Bown: Acta Crystallogr. Sect. A, 1998, vol. 54, pp. 661–74.

    Article  Google Scholar 

  18. A. Bondi: J. Phys. Chem., 1964, vol. 68, p. 441–51.

    Article  CAS  Google Scholar 

  19. E.J. Chan, A.D. Rae, and T.R. Welberry: Acta Crystallogr. Sect. B-Struct. Sci., 2009, vol. 65, pp. 509–15.

    Article  Google Scholar 

  20. P. Vishweshwar, J.A. McMahon, M. Oliveira, M.L. Peterson, and M.J. Zaworotko: J. Am. Chem. Soc., 2005, vol. 127, pp. 16802–03.

    Article  CAS  Google Scholar 

  21. A.D. Bond, R. Boese, and G.R. Desiraju: Angew. Chem.-Int. Ed., 2007, 46, pp. 615–17.

    Article  CAS  Google Scholar 

  22. A.D. Bond, R. Boese, and G.R. Desiraju: Angew. Chem.-Int. Ed., 2007, vol. 46, pp. 618–22.

    Article  CAS  Google Scholar 

  23. T.R. Welberry: Rep. Prog. Phys., 1985, vol. 48, p. 1543.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Diffuse scattering data for benzocaine forms I and II and aspirin form (I) were collected on the 11-ID-B beamline at the APS (Argonne, IL). Diffuse scattering data for aspirin form (II) were collected on the powder diffraction beamline at the Australian Synchrotron (Victoria, Australia). The support of the Australian Research Council, the Australian Synchrotron Research Program, and the NCI National Facility at the ANU is gratefully acknowledged. DJG gratefully acknowledges the support of the Australian Institute of Nuclear Science and Engineering. We also thank Drs. Peter Chupas and Karena Chapman, APS, and Dr. Kia Wallwork, the powder diffraction beamline of the Australian Synchrotron, for assistance with the collection of the diffuse scattering data. Use of the APS was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Welberry.

Additional information

Manuscript submitted March 2, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welberry, T.R., Chan, E.J., Goossens, D.J. et al. Diffuse Scattering as an Aid to the Understanding of Polymorphism in Pharmaceuticals. Metall Mater Trans A 43, 1434–1444 (2012). https://doi.org/10.1007/s11661-011-0719-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0719-7

Keywords

Navigation