Skip to main content
Log in

Influence of Aluminum Alloying and Heating Rate on Austenite Formation in Low Carbon-Manganese Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This investigation focuses on the austenite formation process during continuous heating, over a wide range of heating rates (0.05 to 20 K/s), in three low carbon-manganese steels alloyed with different levels of aluminum (0.02, 0.48, and 0.94, wt pct Al). High resolution dilatometry, combined with metallographic observations, was used to determine the starting (Ac 1) and finishing (Ac 3) temperatures of this transformation. It is shown that both the aluminum content and the applied heating rate have a strong influence on this process. During fast heating (>1 K/s), the pearlite phase present in the initial microstructure remains almost unaffected up to temperature Ac 1. On the contrary, during slow heating, cementite lamellas inside pearlite partially dissolve, this dissolution effect being more pronounced for the lower carbon and higher aluminum content steels. The changes in the initial microstructure during slow heating affect the austenite nucleation and growth processes. Furthermore, in the aluminum alloyed steels, slow heating conditions shift the Ac 3 temperature to higher values. This shift is suggested to be due to aluminum partitioning from austenite to ferrite, which stabilizes ferrite and delays its transformation to higher temperatures. Thermodynamic calculations carried out with MTDATA software seem to support some of the experimental observations carried out under very low heating conditions close to equilibrium (0.05 K/s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo, Japan.

References

  1. B.C. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 285–303.

    Article  Google Scholar 

  2. J. Mahieu, S. Claessens, and B.C. De Cooman: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2905–08.

    Article  CAS  Google Scholar 

  3. Y. Xiang-mi, J. Zhou-hua, and L. Hua-bing: J. Iron Steel Res. Int., 2007, vol. 14, pp. 39–46.

    Google Scholar 

  4. M. Militzer, A. Giumelli, E.B. Hawbolt, and T.R. Meadowcroft: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3399–3409.

    Article  CAS  Google Scholar 

  5. J. Mahieu, J. Maki, B.C. de Cooman, and S. Claessens: Metall. Mater. Trans A, 2002, vol. 33A, pp. 2573–80.

    Article  CAS  Google Scholar 

  6. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

  7. K.J. Albutt and S. Garber: J. Iron Steel Inst. Jpn., 1966, vol. 204, pp. 1217–22.

    CAS  Google Scholar 

  8. G.R. Speich and A. Szirmae: Trans. AIME, 1969, vol. 245, pp. 1063–74.

    CAS  Google Scholar 

  9. C.I. García and A.J. DeArdo: Metall. Trans. A, 1981, vol. 12A, pp. 521–30.

    Google Scholar 

  10. G.R. Speich, V.A. Demarest, and R.L. Miller: Metall. Trans. A, 1981, vol. 12A, pp. 1419–28.

    Google Scholar 

  11. E. Navara and R. Harrysson: Scripta Metall., 1984, vol. 18, pp. 605–10.

    Article  CAS  Google Scholar 

  12. D.P. Datta and A.M. Gokhale: Metall. Trans. A, 1981, vol. 12A, pp. 443–50.

    Google Scholar 

  13. A. Roósz, Z. Gacsi, and E.G. Fuchs: Acta Metall., 1983, vol. 31, pp. 509–17.

    Article  Google Scholar 

  14. F.G. Caballero, C. Capdevila, and C. García de Andrés: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1283–91.

    Article  CAS  Google Scholar 

  15. F.G. Caballero, C. Capdevila, and C. García de Andrés: Scripta Mater., 2000, vol. 42, pp. 1159–65.

    Article  CAS  Google Scholar 

  16. F.G. Caballero, C. Capdevila, and C. García de Andrés: ISIJ Int., 2003, vol. 43, pp. 726–35.

    Article  CAS  Google Scholar 

  17. D.V. Shtansky, K. Nakai, and Y. Ohmori: Acta Mater., 1999, vol. 47, pp. 2619–32.

    Article  CAS  Google Scholar 

  18. F.L.G. Oliveira, M.S. Andrade, and A.B. Cota: Mater. Charact., 2007, vol. 58, pp. 256–61.

    Article  CAS  Google Scholar 

  19. J.-H. Park and Y.-K. Lee: Scripta Mater., 2008, vol. 58, pp. 602–05.

    Article  CAS  Google Scholar 

  20. C. García de Andrés, F.G. Caballero, and C. Capdevila: Scripta Mater., 1998, vol. 38, pp. 1835–42.

    Article  Google Scholar 

  21. D. San Martín, T. de Cock, A. García-Junceda, F.G. Caballero, C. Capdevila, and C. García de Andrés: Mater. Sci. Technol., 2008, vol. 24, pp. 266–72.

    Article  Google Scholar 

  22. D. San Martín, P.E.J. Rivera-Díaz-Del-Castillo, and C. García de Andrés: Scripta Mater., 2008, vol. 58, pp. 926–29.

    Article  Google Scholar 

  23. V.I. Savran, Y. van Leeuwen, D.N. Hanlon, C. Kwakernaak, W.G. Sloof, and J. Sietsma: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 946–95.

    Article  CAS  Google Scholar 

  24. V.I. Savran, S.E. Offerman, and J. Sietsma: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 583–91.

    Article  CAS  Google Scholar 

  25. F.G. Caballero, C. Capdevila, and C. García de Andrés: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1283–91.

    Article  CAS  Google Scholar 

  26. M.M. Souza, J.R.C. Guimaraes, and K.K. Chala: Metall. Trans. A, 1982, vol. 13A, pp. 575–79.

    Google Scholar 

  27. N. Pussegoda, W.R. Tyson, P. Wycliffe, and G.R. Purdy: Metall. Trans. A, 1984, vol. 15A, pp. 1499–1502.

    CAS  Google Scholar 

  28. Y. Palizdar, R.C. Cochrane, R. Brydson, D. Crowther, D. San Martin, and A.J. Scott: Mater. Charact., 2010, vol. 61, pp. 159–67.

    Article  CAS  Google Scholar 

  29. C. García de Andrés, F.G. Caballero, C. Capdevila, and L.F. Álvarez: Mater. Charact., 2002, vol. 48, pp. 101–11.

    Article  Google Scholar 

  30. MTDATA, Databases SGSOL (SGTE Solution Database) and SGSUB (Substance Database), NPL Software Tool for the Calculation of Phase Equilibria and Thermodynamic Properties, National Physical Laboratory, Teddington, United Kingdom, 2006.

  31. Y. Palizdar, A.J. Scott, R.C. Cochrane, and R. Brydson: Mater. Sci. Technol., 2009, vol. 25, pp. 1243–48.

    Article  CAS  Google Scholar 

  32. Y. Palizdar, D. San Martin, A.P. Brown, M. Ward, R.C. Cochrane, R. Brydson, D. Crowther, and A.J. Scott: J. Mater. Sci., 2011, vol. 46, pp. 2384–87.

    Article  CAS  Google Scholar 

  33. S.K. Jayaswal and S.P. Gupta: Z. Metallkd., 1992, vol. 83, pp. 809–19.

    CAS  Google Scholar 

  34. J.J. Yi, I.S. Kim, and H.S. Choi: Metall. Trans. A, 1985, vol. 16A, pp. 1237–45.

    CAS  Google Scholar 

  35. V.I. Zel’dovich, I.V. Khomskaya, and O.S. Rinkevich: Phys. Met. Metallogr., 1992, vol. 73, pp. 250–65.

    Google Scholar 

Download references

Acknowledgments

P Javier Vara Miñambres, Nacho Ruiz Oliva, Alfonso García Delgado, and Íñigo Amurrio Anguita, CENIM-CSIC (Spain), are gratefully acknowledged for their experimental support with the dilatometry experiments, metallographic sample preparation, and assistance with the FEG-SEM microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. San Martín.

Additional information

Manuscript submitted June 14, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

San Martín, D., Palizdar, Y., García-Mateo, C. et al. Influence of Aluminum Alloying and Heating Rate on Austenite Formation in Low Carbon-Manganese Steels. Metall Mater Trans A 42, 2591–2608 (2011). https://doi.org/10.1007/s11661-011-0692-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0692-1

Keywords

Navigation