Skip to main content
Log in

Role of Si in Improving the Shape Recovery of FeMnSiCrNi Shape Memory Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of Si addition on the microstructure and shape recovery of FeMnSiCrNi shape memory alloys has been studied. The microstructural observations revealed that in these alloys the microstructure remains single-phase austenite (γ) up to 6 pct Si and, beyond that, becomes two-phase γ + δ ferrite. The Fe5Ni3Si2 type intermetallic phase starts appearing in the microstructure after 7 pct Si and makes these alloys brittle. Silicon addition does not affect the transformation temperature and mechanical properties of the γ phase until 6 pct, though the amount of shape recovery is observed to increase monotonically. Alloys having more than 6 pct Si show poor recovery due to the formation of δ-ferrite. The shape memory effect (SME) in these alloys is essentially due to the γ to stress-induced ε martensite transformation, and the extent of recovery is proportional to the amount of stress-induced ε martensite. Alloys containing less than 4 pct and more than 6 pct Si exhibit poor recovery due to the formation of stress-induced α′ martensite through γ-ε-α′ transformation and the large volume fraction of δ-ferrite, respectively. Silicon addition decreases the stacking fault energy (SFE) and the shear modulus of these alloys and results in easy nucleation of stress-induced ε martensite; consequently, the amount of shape recovery is enhanced. The amount of athermal ε martensite formed during cooling is also observed to decrease with the increase in Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Enami, A. Nagasawa, and S. Nenno: Scripta Metall., 1975, vol. 9, pp. 941–48.

    Article  CAS  Google Scholar 

  2. A. Sato, E. Chisima, K. Soma, and T. Mori: Acta Metall., 1982, vol. 30, pp. 1177–83.

    Article  CAS  Google Scholar 

  3. M. Murakami, H. Otsuka, H. Suzuki, and S. Matsuda: Trans. ISIJ, 1987, vol. 27, p. B-88.

    Google Scholar 

  4. H. Otsuka, H. Yamada, H. Tanahashi, and T. Maruyama: Mater. Sci. Forum, 1990, vols. 56–58, pp. 655–60.

  5. T.Y. Hsu: J. Mater. Sci. Technol., 1994, vol. 10, pp. 107–10.

    Google Scholar 

  6. A. Ariapour, I. Yakubtsov, and D. Perovic: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1621–28.

    Article  CAS  Google Scholar 

  7. H. Otsuka, S. Kajiwara, and T. Ishihara: Mater. Charact., 1994, vol. 32, pp. 229–35.

    Article  Google Scholar 

  8. S. Kajiwara, D. Liu, T. Kikuchi, and N. Shinya: Scripta Mater., 2001, vol. 44, pp. 2809–14.

    Article  CAS  Google Scholar 

  9. A. Sato, Y. Yamaji, and T. Mori: Acta Metall., 1986, vol. 34, pp. 287–94.

    Article  CAS  Google Scholar 

  10. M. Murakami, H. Otsuka, H. Suzuki, and S. Matsuda: Proc. Int. Conf. on Martensitic Transformations (ICOMAT-86), Nara, Japan, 1986, pp. 985–90.

    Google Scholar 

  11. M. Andersson, R. Stalmans, and J. Agren: Acta Metall., 1998, vol. 46, pp. 3883–91.

    CAS  Google Scholar 

  12. A.A. Gulyaev: J. Phys. IV, 1995, vol. 5, pp. 469–74.

    Article  CAS  Google Scholar 

  13. X. Tian and Y. Zhang: Mater. Sci. Eng. A, 2009, vol. 516A, pp. 73–77.

    Google Scholar 

  14. K. Tsuzaki, M. Ikegami, Y. Tomota, K. Kurokawa, W. Nakagawara, and T. Maki: Mater. Trans. JIM, 1992, vol. 33, pp. 236–70.

    Google Scholar 

  15. Y. Tamota, M. Piao, T. Hasunuma, and Y. Kimura: Jpn. Inst. Met., 1990, vol. 54, pp. 628–34.

    Google Scholar 

  16. V.G. Gavriljuk, V.V. Bliznuk, B.D. Shanina, and S.P. Kolesnik: Mater. Sci. Eng. A, 2005, vol. 406A, pp. 1–10.

    Google Scholar 

  17. H. Otsuka, H. Yamada, T. Maruyama, H. Tanahashi, S. Matsuda, and M. Murakami: ISIJ Int., 1990, vol. 30, pp. 674–79.

    Article  CAS  Google Scholar 

  18. F.B. Pickering: Physical Metallurgy and the Design of Steels, Applied Science Publishers Ltd., London, 1978, p. 226.

    Google Scholar 

  19. E.I. Gladyshevskii, P.I. Kripyakevich, and Y.B. Kuz’ma: J. Str. Chem., 1962, vol. 3, pp. 402–10.

    Article  Google Scholar 

  20. H.M. Rietveld: Acta Cryst., 1967, vol. 22, pp. 151–52.

    Article  CAS  Google Scholar 

  21. A. Le Bail, H. Duroy, and J.L. Fourquet: Mater. Res. Bull., 1988, vol. 23, pp. 447–52.

    Article  Google Scholar 

  22. J.H. Yang and C.M. Wayman: Mater. Character., 1992, vol. 28, pp. 23–35.

    Article  CAS  Google Scholar 

  23. B.C. Maji, M. Krishnan, and V.V. Rama Rao: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1029–42.

    Article  CAS  Google Scholar 

  24. L. Federzoni and G. Guenin: Scripta Metall. Mater., 1994, vol. 31, pp. 25–30.

    Article  CAS  Google Scholar 

  25. J.H. Jun, W. Jin, and C.S. Choi: Scripta Metall. Mater., 1995, vol. 33, pp. 1339–44.

    Article  CAS  Google Scholar 

  26. J.H. Yang and C.M. Wayman: Metall. Trans. A, 1992, vol. 23A, pp. 1445–54.

    CAS  Google Scholar 

  27. B.C. Maji and M. Krishnan: Scripta Mater., 2003, vol. 48, pp. 71–77.

    Article  CAS  Google Scholar 

  28. C. Zhao: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2599–2604.

    Article  CAS  Google Scholar 

  29. B.E. Warren and B.L. Averbach: J. Appl. Phys., 1950, vol. 21, pp. 595–99.

    Article  CAS  Google Scholar 

  30. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6A, pp. 1345–51.

  31. G. Ghosh and G.B. Olson: Acta Mater., 2002, vol. 50, pp. 2655–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. A.K. Suri, Director, Materials Group, BARC, and Dr. G.K. Dey, Head, Materials Science Division, BARC, for their support and encouragement for the work on shape memory alloys. We thank Mr. A. Laik, Dr. C.B. Basak, and Dr. S. Majumdar for the help received in carrying out the EPMA and SEM during this work. We are also grateful to Messrs. V.C. Krishnamohan Nair and S. Yadav for the melting and fabrication of alloys used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikas C. Maji.

Additional information

Manuscript submitted July 5, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maji, B.C., Krishnan, M., Gouthama et al. Role of Si in Improving the Shape Recovery of FeMnSiCrNi Shape Memory Alloys. Metall Mater Trans A 42, 2153–2165 (2011). https://doi.org/10.1007/s11661-011-0651-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0651-x

Keywords

Navigation