Skip to main content
Log in

Alloying Element Partition and Growth Kinetics of Proeutectoid Ferrite in Hot-Deformed Fe-0.1C-3Mn-1.5Si Austenite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Alloying element partition and growth kinetics of proeutectoid ferrite in deformed austenite were studied in an Fe-0.1C-3Mn-1.5Si alloy. Very small ferrite particles, less than several microns in size, were formed within the austenite matrix, presumably at twin boundaries as well as at austenite grain boundaries. Scanning transmission electron microscopy–energy-dispersive X-ray (STEM-EDX) analysis revealed that Mn was depleted and Si was enriched in the particles formed at temperatures higher than 943 K (670 °C). These were compared with the calculation of local equilibrium in quaternary alloys, in which the difference in diffusivity between two substitutional alloying elements was assumed to be small compared to the difference from the carbon diffusivity in austenite. Although the growth kinetics were considerably faster than calculated under volume diffusion control, a fine dispersion of ferrite particles was readily obtained in the partition regime due to sluggish growth engendered by diffusion of Mn and Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. It is assumed that the precipitate collects solute atoms from the matrix of a cylindrical shape, whose radius and length are proportional to \( \sqrt {D_{V} t} \) and \( \sqrt {D_{p} t} \), respectively, at an early stage of growth. The volume of the cylinder is equal to the volume of a hypothetical diffusion cell approximated as a sphere of radius\( \sqrt {D_{\text{app}} t} \), thus giving the preceding relationship.

References

  1. H.I. Aaronson and H.A. Domian: Trans. TMS-AIME, 1966, vol. 236, pp. 781–96.

    CAS  Google Scholar 

  2. K.R. Kinsman and H.I. Aaronson: Metall. Trans., 1973, vol. 4, pp. 959–67.

    Article  CAS  Google Scholar 

  3. J.R. Bradley and H.I. Aaronson: Metall. Trans. A, 1981, vol. 12A, pp. 1729–50.

    Google Scholar 

  4. K. Oi, C. Lux, and G.R. Purdy: Acta Mater., 2000, vol. 48, pp. 2147–55.

    Article  CAS  Google Scholar 

  5. A. Phillion, H.S. Zurob, C.R. Hutchinson, H. Guo, D.V. Malakhov, J. Nakano, and G.R. Purdy: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1237–42.

    Article  CAS  Google Scholar 

  6. C.R. Hutchinson, H.S. Zurob, and Y. Brechet: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1711–20.

    Article  CAS  Google Scholar 

  7. T. Tanaka, H.I. Aaronson, and M. Enomoto: Metall. Trans. A, 1995, vol. 26A, pp. 547–59.

    Article  CAS  Google Scholar 

  8. T. Tanaka, H.I. Aaronson, and M. Enomoto: Metall. Trans. A, 1995, vol. 26A, pp. 561–80.

    Article  CAS  Google Scholar 

  9. H. Guo, G.R. Purdy, M. Enomoto, and H.I. Aaronson: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1721–29.

    Article  CAS  Google Scholar 

  10. H. Yada, C.M. Li, and H. Yamagata: ISIJ Int., 2000, vol. 40, pp. 200–06.

    Article  CAS  Google Scholar 

  11. M. Hillert: The Mechanism of Phase Transformations in Crystalline Solids, Institute of Metals, London, 1969, pp. 231–47.

    Google Scholar 

  12. M. Hillert: in Thermodynamics and Phase Transformations, J. Ågren, Y. Bréchet, C. Hutchinson, J. Philibert, and G. Purdy, eds., EDP Sciences, Cedex, France, 2006, pp. 9–24.

  13. J.S. Kirkaldy: Can. J. Phys., 1958, vol. 36, pp. 907–16.

    Article  CAS  Google Scholar 

  14. G.R. Purdy, D.H. Weichert, and J.S. Kirkaldy: Trans. TMS-AIME, 1964, vol. 230, pp. 1025–34.

    CAS  Google Scholar 

  15. D.E. Coates: Metall. Trans., 1972, vol. 3, pp. 1203–12.

    Article  CAS  Google Scholar 

  16. D.E. Coates: Metall. Trans., 1973, vol. 4, pp. 1077–86.

    Article  CAS  Google Scholar 

  17. M. Enomoto: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1703–10.

    Article  CAS  Google Scholar 

  18. R.F. Sekerka and S.L. Wang: in Lectures on the Theory of Phase Transformations, 2nd ed., H.I. Aaronson, ed., TMS, Warrendale, PA, 1999, pp. 231–84.

  19. T. Tanaka, H.I. Aaronson, and M. Enomoto: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 535–44.

    Article  CAS  Google Scholar 

  20. M. Enomoto and H.I. Aaronson: Metall. Trans. A, 1987, vol. 18A, pp. 1574–57.

    Google Scholar 

  21. M. Enomoto: Int. Conf. on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, Tokyo, June 6–10, 1998, I. Tamura, ed., The Iron and Steel Institute of Japan, Tokyo, 1988, pp. 360–67.

  22. J.R. Bradley, J.M. Rigsbee, and H.I. Aaronson: Metall. Trans. A, 1977, vol. 8A, pp. 323–33.

    CAS  Google Scholar 

  23. J. Fridberg, L.-E. Torndahl, and M. Hillert: Jernkontorets Ann., 1969, vol. 153, pp. 263–76.

    CAS  Google Scholar 

  24. H.B. Aaron and H.I. Aaronson: Acta Metall., 1968, vol. 16, pp. 789–98.

    Article  CAS  Google Scholar 

  25. N.L. Peterson: Grain-Boundary Structure and Kinetics, ASM, Metals Park, OH, 1980, pp. 209–38.

    Google Scholar 

  26. J. Friedel: Dislocations, Pergamon, Oxford, United Kingdom, 1964, pp. 406–08.

    Google Scholar 

  27. P. Shewmon: Diffusion in Solids, 2nd ed., TMS, Warrendale, PA, 1989, pp. 112–15.

    Google Scholar 

  28. L.C. Brown and J.S. Kirkaldy: Trans. TMS-AIME, 1964, vol. 230, pp. 223–26.

    CAS  Google Scholar 

Download references

Acknowledgment

We are thankful to Dr. T. Yamashita, Steel Research Laboratory, JFE Steel Corporation, for her assistance in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Enomoto.

Additional information

Manuscript submitted July 27, 2010.

Appendix

Appendix

Equation of isoactivity surface of carbon in quaternary austenite

It is demonstrated that Eq. [2] represents the isoactivity surface of carbon that passes through the bulk alloy composition. To begin with, the logarithm of the activity of carbon in austenite is expanded to the first order about the austenite end of the interfacial tie-line (point b in Figure 6) as

$$ \ln a_{1} = \ln a_{1}^{\gamma } + \left. {{\frac{{\partial \ln a_{1} }}{{\partial x_{1} }}}} \right|_{b} \left( {x_{1} - x_{1}^{\gamma } } \right) + \left. {{\frac{{\partial \ln a_{1} }}{{\partial x_{2} }}}} \right|_{b} \left( {x_{2} - x_{2}^{\gamma } } \right) + \left. {{\frac{{\partial \ln a_{1} }}{{\partial x_{3} }}}} \right|_{b} \left( {x_{3} - x_{3}^{\gamma } } \right) $$
(A1)

Since this surface passes through the bulk alloy composition, i.e., a C(o) = a C(b), it is expressed by the equation

$$ x_{1}^{0} - x_{1}^{\gamma } = - {\frac{{\partial \ln a_{1} / \partial x_{2} }}{{\partial \ln a_{1} /\partial x_{1} }} }\left({x_{2}^{0} - x_{2}^{\gamma } } \right) - {\frac{{\partial \ln a_{1} /\partial x_{3} }}{{\partial \ln a_{1} /\partial x_{1} }} }\left( {x_{3}^{0} - x_{3}^{\gamma } } \right) $$
(A2)

when points b and o are not far from each other.

On the other hand, substitution of Eqs. [5] through [7] into Eq. [2] yields

$$ x_{1}^{\gamma } - x_{1}^{0} = \left( {x_{2}^{\gamma } - x_{2}^{0} } \right) \cdot {\frac{{D_{12}^{\gamma } }}{{D_{22}^{\gamma } - D_{11}^{\gamma } }}} + \left( {x_{3}^{\gamma } - x_{3}^{0} } \right) \cdot {\frac{{D_{13}^{\gamma } }}{{D_{33}^{\gamma } - D_{11}^{\gamma } }}} $$
(A3)

Since\( D_{22}^{\gamma } < < D_{11}^{\gamma } \) and \( D_{33}^{\gamma } < < D_{11}^{\gamma } \), Eq. [A3] is reduced to

$$ x_{1}^{\gamma } - x_{1}^{0} = \left( {x_{2}^{\gamma } - x_{2}^{0} } \right) \cdot \left( { - {\frac{{D_{12}^{\gamma } }}{{D_{11}^{\gamma } }}}} \right) + \left( {x_{3}^{\gamma } - x_{3}^{0} } \right) \cdot \left( { - {\frac{{D_{13}^{\gamma } }}{{D_{11}^{\gamma } }}}} \right) $$
(A4)

When solute 1 ( = carbon) is interstitial and solutes 2 ( = Mn) and 3 ( = Si) are substitutional, Brown and Kirkaldy[28] have shown that

$$ {\frac{{D_{12}^{\gamma } }}{{D_{11}^{\gamma } }}} = {\frac{{\partial \ln \mu_{1} /\partial x_{2} }}{{\partial \ln \mu_{1} /\partial x_{1} }}} = {\frac{{\partial \ln a_{1} /\partial x_{2} }}{{\partial \ln a_{1} /\partial x_{1} }}} $$
(A5)

and

$$ {\frac{{D_{13}^{\gamma } }}{{D_{11}^{\gamma } }}} = {\frac{{\partial \ln \mu_{1} /\partial x_{3} }}{{\partial \ln \mu_{1} /\partial x_{1} }}} = {\frac{{\partial \ln a_{1} /\partial x_{3} }}{{\partial \ln a_{1} /\partial x_{1} }}} $$
(A6)

hold. Hence, Eqs. [A2] and [A4] are identical.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, R., Kanno, K. & Enomoto, M. Alloying Element Partition and Growth Kinetics of Proeutectoid Ferrite in Hot-Deformed Fe-0.1C-3Mn-1.5Si Austenite. Metall Mater Trans A 42, 2189–2198 (2011). https://doi.org/10.1007/s11661-011-0646-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0646-7

Keywords

Navigation