Skip to main content
Log in

X-Ray Diffraction Study on the Strain Anisotropy and Dislocation Structure of Deformed Lath Martensite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

18Ni (300) maraging steel possessing lath martensite structure was deformed by four passes of equal-channel angular pressing (ECAP) at ambient temperature. Line profile analysis (LPA) of X-ray diffraction (XRD) patterns identified strong strain anisotropy and remarkable increases in the relative fraction of screw dislocations after ECAP. The strain anisotropy was reasonably accounted for by the anisotropy of elastic constants. Domination of screw dislocations in the deformed structure was attributed to the preferred annihilation of edge dislocations in the early stages of deformation along with the difficulties for annihilation of screw dislocations by cross slipping. Cobalt addition was mainly assumed to make cross slipping difficult by reducing stacking-fault energy and favoring short-range ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Lu and N. Hansen: Scripta Mater., 2009, vol. 60, pp. 1033–38.

    Article  CAS  Google Scholar 

  2. A.S. Argon and P. Haasen: Acta Metall. Mater., 1993, vol. 41, pp. 3289–306.

    Article  CAS  Google Scholar 

  3. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: J. Mater. Res., 2002, vol. 17, pp. 5–8.

    Article  CAS  Google Scholar 

  4. M. Wilkens: Phys. Status Solidi (a), 1970, vol. 2, pp. 359–70.

    Article  Google Scholar 

  5. J.-D. Kamminga and L.J. Seijbel: J. Res. Nat. Inst. Stand. Technol., 2004, vol. 109, pp. 65–74.

    Google Scholar 

  6. S. Hossein Nedjad and M.R. Movaghar Gharabagh: Int. J. Mater. Res., 2008, vol. 99, pp. 1248–55.

    CAS  Google Scholar 

  7. M.R. Movaghar Garabagh, S. Hossein Nedjad, and M. Nili Ahmadabadi: J. Mater. Sci., 2008, vol. 43, pp. 6840–47.

    Article  CAS  Google Scholar 

  8. B.E. Warren: X-Ray Diffraction, Addison-Wesley, Reading, MA, 1969.

  9. T. Ungar, I. Dragomir, A. Revesz, and A. Borbely: J. Appl. Cryst., 1999, vol. 32, pp. 992–1002.

    Article  CAS  Google Scholar 

  10. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.

    Article  CAS  Google Scholar 

  11. R.I. Garrod and J.H. Auld: Acta Metall., 1955, vol. 3, pp. 190–98.

    Article  Google Scholar 

  12. T. Ungar and A. Borbely: Appl. Phys. Lett., 1996, vol. 69, pp. 3173–75.

    Article  CAS  Google Scholar 

  13. D.K. Chaudhuri, P.A. Ravindran, and J.J. Wert: J. Appl. Phys., 1972, vol. 43, pp. 778–88.

    Article  CAS  Google Scholar 

  14. H. Mughrabi, T. Ungar, W. Kienle, and M. Wilkens: Phil. Mag. A, 1986, vol. 53, pp. 793–813.

    Article  CAS  Google Scholar 

  15. M. Iranpour Mobarake, M. Nili-Ahmadabadi, B. Poorganji, A. Fatehi, H. Shirazi, T. Furuhara, M. Habibi Parsa, and S. Hossein Nedjad: Mater. Sci. Eng. A, 2008, vol. 491, pp. 172–76.

    Article  Google Scholar 

  16. E. Schafler, M. Zehetbauer, and T. Ungár: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 220–23.

  17. T. Ungár, J. Gubicza, P. HanáK, and I. Alexandrov: Mater. Sci. Eng., 2001, vols. A319–A321, pp. 274–78.

  18. D. Fátay, E. Bastarash, K. Nyilas, S. Dobatkin, J. Gubicza, and T. Ungár: Z. Metallkd., 2003, vol. 94, pp. 842–47.

    Google Scholar 

  19. T. Ungár: J. Mater. Sci., 2007, vol. 42, pp. 1584–93.

    Article  Google Scholar 

  20. A. Revesz, T. Ungar, A. Borbely, and J. Lendavi: Nanostruct. Mater., 1996, vol. 7, pp. 779–88.

    Article  CAS  Google Scholar 

  21. J. Gubicza, L. Balogh, R.J. Hellmig, Y. Estrin, and T. Ungár: Mater. Sci. Eng. A, 2005, vols. 400–401, pp. 334–38.

  22. M. Zehetbauer and V. Seumer: Acta Metall. Mater., 1993, vol. 41, pp. 577–88.

    Article  CAS  Google Scholar 

  23. Y. Estrin, L.S. Tóth, A. Molinari, and Y. Brechet: Acta Mater., 1998, vol. 46, pp. 5509–22.

  24. T. Ungár, J. Gubicza, G. Ribárik, and A. Borbély: J. Appl. Cryst., 2001, vol. 34, pp. 298–310.

    Article  Google Scholar 

  25. H.G. Brion and P. Haasen: Phil. Mag. A, 1985, vol. 51, pp. 879–91.

    Article  CAS  Google Scholar 

  26. H. Siethoff and W. Schroeter: Z. Metallkd., 1984, vol. 75, pp. 475–91.

    CAS  Google Scholar 

  27. B.R. Banerjee, J.J. Hauser, and J.M. Capenos: Met. Sci. J., 1968, vol. 2, pp. 76–80.

    Article  CAS  Google Scholar 

  28. S. Spooner, H.J. Rack, and D. Kalish: Metall. Trans., 1971, vol. 2, pp. 2306–08.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hossein Nedjad.

Additional information

Manuscript submitted June 19, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossein Nedjad, S., Hosseini Nasab, F., Movaghar Garabagh, M.R. et al. X-Ray Diffraction Study on the Strain Anisotropy and Dislocation Structure of Deformed Lath Martensite. Metall Mater Trans A 42, 2493–2497 (2011). https://doi.org/10.1007/s11661-011-0620-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0620-4

Keywords

Navigation