Skip to main content
Log in

Crystallographic and Microstructural Studies of Lath Martensitic Steel During Tensile Deformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Significant crystallographic refinement was observed in the as-quenched lath martensitic steel during tensile deformation up to a strain of 20 pct. Crystallographic investigation by electron backscattering diffraction analysis coupled with the use of crystal plasticity model confirmed that the activation behavior of slip systems is inhomogeneous even within each martensite block. In particular, the activation behavior of slip systems is initially affected by the initial crystal orientation; however, the effect becomes negligible with increasing deformation. In addition, slip systems parallel to the lath plane are preferentially activated during elongation. Our results indicate that the nonuniform crystal rotation within individual blocks is induced not only by grain interaction phenomena but also by the anisotropic activity of slip systems. These are key factor that determines the grain refinement behavior in the as-quenched lath martensitic steel during deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.P. Koistinen and R.E. Marburger: Acta Metall. Mater., 1959, vol. 7, pp. 59-60.

    Article  Google Scholar 

  2. R. Lagneborg: Acta Metall. Mater., 1964, vol. 12, pp. 823-43.

    Article  Google Scholar 

  3. G.Y. Lai, W.E. Wood, R.A. Clark, V.F. Zackay, and E.R. Parker: Metall. Trans., 1974, vol. 5, pp. 1663-70.

    Article  Google Scholar 

  4. T.E. Swarr and G. Krauss: Metall. Trans. A, 1976, vol. 7A, pp. 41-8.

    Article  Google Scholar 

  5. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789-99.

    Article  Google Scholar 

  6. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279-88.

    Article  Google Scholar 

  7. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323-31.

    Article  Google Scholar 

  8. V.P. Vylezhnev, L.M. Kleyner, G.V. Kurdjumov, and V.I. Sarrak: Fiz. Met. Metalloved., 1967, vol. 24, pp. 188-91.

    Google Scholar 

  9. Y.V. Khlebnikova, D.P. Rodionov, I.L. Yakovleva, and V.M. Schastlivtsev: Phys. Met. Metall., 1998, vol. 86, pp. 394-9.

    Google Scholar 

  10. V.M. Schastlivtsev, D.P. Rodionov, Y.V. Khlebnikova, and I.L. Yakovleva: Mater. Sci. Eng. A, 1999, vol. 275, pp. 437-42.

    Article  Google Scholar 

  11. R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi: Acta Mater., 2002, vol. 50, pp. 4177-89.

    Article  Google Scholar 

  12. N. Tsuji and T. Maki: Scripta Mater., 2009, vol. 60, pp. 1044-9.

    Article  Google Scholar 

  13. K. Nakashima, Y. Fujimura, H. Matsubayashi, T. Tsuchiyama, and S. Takaki: Tetsu-to-Hagane, 2007, vol. 93, pp. 459-65.

    Article  Google Scholar 

  14. J. Inoue, S. Nambu, Y. Ishimoto, and T. Koseki: Scripta Mater., 2008, vol. 59, pp. 1055-8.

    Article  Google Scholar 

  15. S. Nambu, M. Michiuchi, J. Inoue, and T. Koseki: Compos. Sci. Technol., 2009, vol. 69, pp. 1936-41.

    Article  Google Scholar 

  16. S. Nambu, M. Michiuchi, Y. Ishimoto, K. Asakura, J. Inoue, and T. Koseki: Scripta Mater., 2009, vol. 60, pp. 221-4.

    Article  Google Scholar 

  17. M. Michiuchi, S. Nambu, Y. Ishimoto, J. Inoue, and T. Koseki: Acta Mater., 2009, vol. 57, pp. 5283-91.

    Article  Google Scholar 

  18. P. Lhuissier, J. Inoue, and T. Koseki: Scripta Mater., 2011, vol. 64, pp. 970-3.

    Article  Google Scholar 

  19. M. Ojima, J. Inoue, S. Nambu, P. Xu, K. Akita, H. Suzuki, and T. Koseki: Scripta Mater., 2011, vol. 66, pp. 139-42.

    Article  Google Scholar 

  20. F.J. Humphreys, P.B. Prangnell, J.R. Bowen, A. Gholinia, and C. Harris: Philos. Trans. R. Soc. A, 1999, vol. 357, pp. 1663-80.

    Article  Google Scholar 

  21. X.G. Fan, H. Yang, Z.C. Sun, and D.W. Zhang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5391-9.

    Article  Google Scholar 

  22. T.O. Erinosho, A.C.F. Cocks, and F.P.E. Dunne: Int. J. Plast., 2013, DOI:10.1016/j.ijplas.2013.04.008.

  23. M. Kraska, M. Doig, D. Tikhomirov, D. Raabe, and F. Roters: Comput. Mater. Sci., 2009, vol. 46, pp. 383-92.

    Article  Google Scholar 

  24. I.J. Beyerlein and L.S. Tóth: Prog. Mater. Sci., 2009, vol. 54, pp. 427-510.

    Article  Google Scholar 

  25. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe: Acta Mater., 2010, vol. 58, pp. 1152-1211.

    Article  Google Scholar 

  26. B. Klusemann, B. Svendsen, and H. Vehoff: Comp. Mater. Sci., 2012, vol. 52, pp. 25-32.

    Article  Google Scholar 

  27. D. Stojakovic, R.D. Doherty, S.R. Kalidindi, and F.J.G. Landgraf: Metall. Trans. A, 2008, vol. 39, pp. 1738-46.

    Article  Google Scholar 

  28. S. Reese and D Christ: Int. J. Plast., 2008, vol. 24, pp. 455-82.

    Article  Google Scholar 

  29. N. Siredey, E. Patoor, M. Berveiller, and A. Eberhardt: Int. J. Solids Struct., 1999, vol. 36, pp. 4289-315.

    Article  Google Scholar 

  30. X.M. Wang, B.X. Xu, and Z.F. Yue: Int. J. Plast., 2008, vol. 24, pp. 1307-32.

    Article  Google Scholar 

  31. D.C. Lagoudas, P.B. Entchev, P. Popov, E. Patoor, L.C. Brinson, and X. Gao: Mech. Mater., 2006, vol. 38, pp. 430–62.

  32. P. Thamburaja and L. Anand: J. Mech. Phys. Solids, 2001, vol. 49, pp. 709–37.

  33. P. Shanthraj and M.A. Zikry: J. Mater. Res., 2012, vol. 27, pp. 1598-1611.

    Article  Google Scholar 

  34. H. Ghassemi-Armaki, P. Chen, S. Bhat, S. Sadagopan, S. Kumar, and A. Bower: Acta Mater., 2013, vol. 61(10), pp. 3640-42.

    Article  Google Scholar 

  35. Y. Mine, K. Hirashita, H. Takashima, M. Matsuda, and K. Takashima: Mater. Sci. Eng. A, 2013, vol. 560, pp. 535-44.

    Article  Google Scholar 

  36. S. Morito, Y. Edamatsu, K. Ichinotani, T. Ohba, T. Hayashi, Y. Adachi, T. Furuhara, G. Miyamoto, and N. Takayama: J. Alloys Compd., 2012, DOI:10.1016/j.jallcom.2012.0.

  37. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789–99.

    Article  Google Scholar 

Download references

Acknowledgments

The present research was conducted as part of an ISIJ Research Promotion Grant and the ALCA Project funded by the Iron and Steel Institute of Japan (ISIJ) and Japan Science and Technology Agency, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyuntaek Na.

Additional information

Manuscript submitted August 21, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, H., Nambu, S., Ojima, M. et al. Crystallographic and Microstructural Studies of Lath Martensitic Steel During Tensile Deformation. Metall Mater Trans A 45, 5029–5043 (2014). https://doi.org/10.1007/s11661-014-2461-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2461-4

Keywords

Navigation