Skip to main content
Log in

Correlating Ultrasonic Attenuation and Microtexture in a Near-Alpha Titanium Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Near-α titanium alloys are an integral part of aeroengines; however, since the 1970s, it has been recognized that laboratory and field components fail in a reduced number of cycles when a dwell at the peak stress is imposed. Research over the last few decades has shown that one of the primary reasons for the debit in fatigue life is related to the presence of microtexture in these alloys. Many aeroengine components were forged before the concept of microtexture, and its deleterious effects, had been realized. Thus, because of the increased potential for early failure of these components, a need exists for a nondestructive method to assess the degree of microtexture present in legacy hardware in order to separate those which are prone to dwell fatigue failure from those that are not. Hardware with a high degree of microtexture can be scheduled for more frequent inspections to reduce the risk of in-flight failure. The present work describes a methodology by which this can be achieved using ultrasonic attenuation measurements of the component in pulse-echo imaging mode. The results indicate nearly linear dependence of ultrasonic attenuation on microtextured region size in the d/λ = 0.1 to 1.0 range, where d and λ are the effective microtexture region size in the direction of wave propagation and the ultrasonic wavelength, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Report No A-98-27, National Transportation and Safety Board (NTSB), Washington DC, 1998.

  2. F. McBagonluri, E. Akpan, C. Mercer, W. Shen, and W.O. Soboyejo: J. Eng. Mater. Technol., 2005, vol. 127 (I), pp. 46–57.

    Article  CAS  Google Scholar 

  3. W.J. Evans and C.R. Gostelow: Metall. Trans. A, 1979, vol. 10A, pp. 1837–46.

    CAS  Google Scholar 

  4. J.E. Hack and G.R. Leverant: Scripta Metall., 1979, vol. 14, pp. 437–41.

    Google Scholar 

  5. J.E. Hack and G.R. Leverant: Metall. Trans. A, 1982, vol. 13A, pp. 1729–38.

    Google Scholar 

  6. W.J. Evans and M.R. Bache: Int. J. Fatigue, 1994, vol. 16, pp. 443–52.

    Article  CAS  Google Scholar 

  7. M.R. Bache, H.M. Davies, and W.J. Evans: Titanium ‘95: Science and Technology, The Institute of Materials, London, 1996, vol. II, pp. 1347–54.

  8. S.H. Spence, W.H. Evans, and M. Cope: Advances in Fracture Research, Proc. 9th Int. Conf. on Fracture, Pergamon, New York, NY, 1997, pp. 1571–78.

    Google Scholar 

  9. M.R. Bache, M. Cope, H.M. Davies, W.J. Evans, and G. Harrison: Int. J. Fatigue, 1997, vol. 19 (SI), pp. S83–S88.

    Article  CAS  Google Scholar 

  10. M.R. Bache, W.J. Evans, and H.M. Davies: J. Mater. Sci., 1997, vol. 32 (13), pp. 3435–42.

    Article  CAS  Google Scholar 

  11. W.J. Evans and M.R. Bache: Int. J. Fatigue, 1994, vol. 16, pp. 443–52.

    Article  CAS  Google Scholar 

  12. M.R. Bache, W.J. Evans, V. Randle, and R.J. Wilson: Mater. Sci. Eng., 1998, vol. A257 (I), pp. 139–44.

    CAS  Google Scholar 

  13. D. Eylon and J.A. Hall: Metall. Trans. A, 1977, vol. 8A, pp. 981–90.

    CAS  Google Scholar 

  14. W. Shen, W.O. Soboyejo, and A.B.O. Soboyejo: Mech. Mater., 2004, vol. 36, pp. 117–40.

    Article  Google Scholar 

  15. W. Shen, A.B.O. Soboyejo, and W.O. Soboyejo: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 163–87.

    Article  CAS  Google Scholar 

  16. A.P. Woodfield, M.D. Gorman, R.R. Corderman, J.A. Sutliff, and B. Yamrom: Eighth World Conference on Titanium, Titanium 95: Science and Technology, The Institute of Materials, London, UK, 1995, pp. 1116–23.

    Google Scholar 

  17. A.P. Woodfield: Dwell Fatigue Cracking in Titanium Alloys, Presentation to AIAA Rotor Integrity Subcommittee, Cincinnati, OH, Oct. 28, 1998.

  18. M.E. Kassner. Y. Kosaka, and J.A. Hall: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2383–89.

    Article  CAS  Google Scholar 

  19. C. Wojcik, K.S. Chan, and D.A. Koss: Acta Metall., 1988, vol. 36 (5), pp. 1261–70.

    Article  CAS  Google Scholar 

  20. D.L. Davidson and D. Eylon: Metall. Trans. A, 1980, vol. 11A, pp. 837–43.

    CAS  Google Scholar 

  21. H.P. Chu, B.A. MacDonald, and O.P. Arora: Titanium Sci. Technol., 1984, vol. 4, pp. 2395–402.

    Google Scholar 

  22. K. Nikbin and J. Radon: Advances in Fracture Research, Proc. 9th Int. Conf. on Fracture, Pergamon, New York, NY, 1997, pp. 423–29.

    Google Scholar 

  23. T. Goswami: Int. J. Fatigue, 1999, vol. 21, pp. 55–76.

    Article  CAS  Google Scholar 

  24. A.N. Stroh: Proc. R. Soc. London, 1954, vol. 223, pp. 404–14.

    Article  Google Scholar 

  25. J.F. Knott: Fundamentals of Fracture Mechanics, Butterworth and Co., London, 1973.

    Google Scholar 

  26. P. Shankar and K.S. Ravichandran: Proc. Fatigue, A.F. Blom, ed., EMAS, Warley, Cradley Heath, United Kingdom, 2002, pp. 1789–96.

  27. K.S. Ravichandran, S.K. Jha, and P.S. Shankar: Proc. Fatigue, A.F. Blom, ed., EMAS, Warley, Cradley Heath, United Kingdom, 2002, pp. 1751–62.

  28. K.S. Ravichandran, E.S. Dwarkadasa, and D. Banerjee: Scripta Metall., 1991, vol. 25, pp. 2115–20.

    Article  CAS  Google Scholar 

  29. M.J. Hicks and A.C. Pickard: Int. J. Fract., 1982, vol. 20, pp. 91–101.

    Article  Google Scholar 

  30. W.O. Soboyejo and J.F. Knott: Fatigue Fract. Eng. Mater. Struct., 1991, vol. 14, pp. 37–49.

    Article  Google Scholar 

  31. W.O. Soboyejo, K. Kishimoto, R.A. Smith, and J.F. Knott: Fatigue Fract. Eng. Mater. Struct., 1989, vol. 12, pp. 167–74.

    Article  Google Scholar 

  32. W.O. Soboyejo, R.C. Reed, and J.F. Knott: Int. J. Fract., 1990, vol. 44, pp. 27–41.

    Article  Google Scholar 

  33. V. Sinha, M.J. Mills, and J.C. Williams: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3141–48.

    Article  CAS  Google Scholar 

  34. V. Sinha, M.J. Mills, and J.C. Williams: J. Mater. Sci., 2007, vol. 42 (19), pp. 8334–41.

    Article  CAS  Google Scholar 

  35. V. Sinha, M.J. Mills, and J.C. Williams: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2015–26.

    Article  CAS  Google Scholar 

  36. V. Sinha, J.E. Spowart, M.J. Mills, and J.C. Williams: Metall. Mater. Trans. A, 2006, vol. 37 A, pp. 1507–18.

    Article  Google Scholar 

  37. F.P.E. Dunne, A. Walker, and D. Rugg: Proc. R. Soc. A, 2007, vol. 463, pp. 1467–89.

    Article  CAS  Google Scholar 

  38. F.P.E. Dunne, D. Rugg, and A. Walker: Int. J. Plast., 2007, vol. 23, pp. 1061–83.

    Article  CAS  Google Scholar 

  39. G. Venkatramani, S. Ghosh, and M. Mills: Acta Mater, 2007, pp. 3971–86.

  40. D. Deka, D.S. Joseph, S. Ghosh, and M.J. Mills: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1371–88.

    Article  CAS  Google Scholar 

  41. T.R. Bieler and S.L. Semiatin: Int. J. Plast., 2002, vol. 18, pp. 1165–89.

    Article  CAS  Google Scholar 

  42. K. Goebbles: Research Techniques in Nondestructive Testing, Academic Press, New York, NY, 1980, pp. 87–157.

    Google Scholar 

  43. B.R. Tittman and L. Ahlberg: Review Progress in Quantitative NDE, Plenum Press, New York, NY, 1983, vol. 2A, pp. 129–45.

  44. Y.K. Han and R.B. Thompson: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 91–104.

    Article  CAS  Google Scholar 

  45. F.J. Margetan, R.B. Thompson, and I. Yalda-Mooshabad: J. Nondestruct. Eval., 1994, vol. 13 (3), pp. 111–36.

    Article  Google Scholar 

  46. P.D. Panetta, R.B. Thompson, and F.J. Margetan: in Review of Progress in Quantitative Nondestructive Evaluation, 17, D.O. Thompson and D.E. Chimenti, eds., Plenum Press, New York, NY, 1998, pp. 89–96.

  47. R.B. Thompson: in Imaging of Complex Media with Acoustic and Seismic Waves, Topics in Applied Physics 84, M. Fink, W.A. Kuperman, J.-P. Montagner, and A. Tourin, eds., Springer-Verlag, Berlin, 2002, pp. 233–56.

  48. P.D. Panetta and R.B. Thompson: in Review of Progress in Quantitative Nondestructive Evaluation, 18B, D.O. Thompson and D.E. Chimenti, eds., Plenum Press, New York, NY, 1999, pp. 1717–24.

  49. J.E. Allison, P.A. Russo, S.R. Seagle, and J.C. Williams: Titanium Science and Technology, Proc. 5th Int. Conf. on Titanium, G. Lutjering, U. Zwicker, and W. Bunk, eds., Munich, 1984, pp. 909–16.

  50. M.P. Blodgett and D. Eylon: J. Nondestruct. Eval., 2001, vol. 20 (1), pp. 1–16.

    Article  Google Scholar 

  51. A.P. Woodfield, M.D. Gorman, J.A. Sutliff, and R.R. Corderman: International Symposium on Fatigue Behavior of Titanium Alloys, TMS, Warrendale, PA, 1998, pp. 111–18.

  52. M.F.X. Giglioti, B.P. Bewlay, J.P. Deaton, R.S. Gilmore, and G.A. Salishchev: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2119–25.

    Article  Google Scholar 

  53. M.G. Glavicic, R.L. Goetz, D.R. Barker, G. Shen, D. Furrer, A. Woodfield, and S.L. Semiatin: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 887–96.

    Google Scholar 

  54. B. Beausir, L.S. Toth, and K.W. Neale: Acta Mater., 2007, vol. 55, pp. 2695–2705.

    Article  CAS  Google Scholar 

  55. U.F. Kocks, C.N. Tome, and H.-R. Wenk: Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, Cambridge University Press, New York, NY, 1998, pp. 179–239.

    Google Scholar 

  56. A.L. Pilchak: Ph.D. Dissertation, The Ohio State University, Columbus, OH, 2009, pp. 110–206.

  57. H.-J. Bunge: Texture Analysis in Materials Science: Mathematical Methods, Butterworth and Co., Berlin, 1982, pp. 55–118.

    Google Scholar 

  58. S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev, and S.L. Semiatin: Acta Mater., 2009, vol. 57, pp. 2470–81.

    Article  CAS  Google Scholar 

  59. J.-Y. Kim and S.I. Rokhlin: J. Acoust. Soc. Am., 2009, vol. 126 (6), pp. 2998–3007.

    Article  CAS  Google Scholar 

  60. J.C. Williams, R.G. Baggerly, and N.E. Paton: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 837–50.

    CAS  Google Scholar 

  61. E.S. Fisher and D. Dever: in The Science, Technology and Application of Titanium, R.I. Jaffee and N.E. Promisel, eds., Pergamon Press, Oxford, United Kingdom, 1970, pp. 373–81.

  62. L. Yang, O.I. Lobkis, and S.I. Rokhlin: Ultrasonics, 2011, vol. 51 (3), pp. 303–09.

    Article  CAS  Google Scholar 

  63. B. Ginty, P. Hallam, C. Hammond, G. Jackson, and C. Robb: Titanium ‘80: Science and Technology, H. Kimura and O. Izumi, eds., Kyoto, TMS-AIME, Warrendale, PA, pp. 2095–2103.

  64. O.S. Boyd: Comput. Geosci., 2006, vol. 32, pp. 259–64.

    Article  Google Scholar 

  65. O.I. Lobkis and S.I. Rokhlin: Appl. Phys. Lett., 2010, vol. 96, article 161905, pp. 1–3.

Download references

Acknowledgments

The authors acknowledge Dr. A.P. Woodfield (GE Aviation, Evendale, OH) for many useful discussions and for providing guidance for the material selections made in this work. The authors are grateful to the Federal Aviation Administration (Grant No. 08-G-009) for funding this work. Several functions used for the elastic moduli calculations were part of the OdfPf software package written by Professor P.R. Dawson, D. Boyce and others at the Deformation Processing Lab (Cornell University, Ithaca, NY, http://anisotropy.mae.cornell.edu). The useful discussions with Dr. J.V. Bernier (Lawrence Livermore National Laboratory) and the assistance of J. Sosa (Center for Accelerated Maturation of Materials, OSU) with image processing are also appreciated. One of the authors (ALP) acknowledges the support and encouragement from the Air Force Research Laboratory Materials and Manufacturing Directorate management during the preparation of this manuscript. Another of the authors (AB) thanks the Director of DMRL (Hyderabad, India) for allowing him to work on the project and also for giving him permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Pilchak.

Additional information

Manuscript submitted September 27, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharjee, A., Pilchak, A.L., Lobkis, O.I. et al. Correlating Ultrasonic Attenuation and Microtexture in a Near-Alpha Titanium Alloy. Metall Mater Trans A 42, 2358–2372 (2011). https://doi.org/10.1007/s11661-011-0619-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0619-x

Keywords

Navigation