Skip to main content
Log in

Backscattered microstructural noise in ultrasonic toneburst inspections

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

A model is presented which relates the absolute backscattered noise level observed in an ultrasonic immersion inspection to details of the measurement system and properties of the metal specimen under study. The model assumes that the backscattered noise signal observed for a given transducer position is an incoherent superposition of echoes from many grains. The model applies to normal-incidence, pulse-echo inspections of weakly-scattering materials using toneburst pulses from either a planar or focused transducer. The model can be used in two distinct ways. Measured noise echoes can be analyzed to deduce a “Figure-of-Merit” (FOM) which is a property of the specimen alone, and which parameterizes the contribution of the microstructure to the observed noise. If the FOM is known, the model can be used to predict the absolute noise levels that would be observed under various inspection scenarios. Tests of the model are reported, using both synthetic noise echoes, and measured noise echoes from metal specimens having simple and complicated microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Bhatia,Ultrasonic Absorption (Chap. 11) (Clarendon Press, Oxford, 1967).

    Google Scholar 

  2. K. Goebbels, Structure analysis by scattered ultrasonic radiation inResearch Techniques in Nondestructive Testing, R. S. Sharpe, ed. (Academic Press, New York, 1980), pp. 87–157.

    Google Scholar 

  3. B. R. Tittmann and L. Ahlberg, Attenuation and grain noise parameters in Ni-base alloys inReview of Progress in Quantitative NDE, Vol. 2A, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1983), pp. 129–145.

    Google Scholar 

  4. P. B. Nagy, D. V. Rypien, and L. Adler, Ultrasonic attenuation measurement by backscattering analysis inReview of Progress in Quantitative NDE, Vol. 6B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1987), pp. 1411–1417.

    Google Scholar 

  5. P. B. Nagy and L. Adler, Scattering induced attenuation of ultrasonic backscattering, inReview of Progress in Quantitative NDE, Vol. 7B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1988), pp. 1263–1271.

    Google Scholar 

  6. E. L. Madsen, M. F. Insana, and J. A. Zagzebski, Method of data reduction for accurate determination of acoustic backscatter coefficients,J. Acoust. Soc. Am. 76:913–923 (1984).

    Google Scholar 

  7. M. F. Insana, E. L. Madsen, T. J. Hall, and J. A. Zagzebski, Tests of accuracy of a data reduction method for determination of acoustic backscatter coefficients,J. Acoust. Soc. Am. 79:1230–1236 (1986).

    Google Scholar 

  8. T. J. Hall, E. L. Madsen, J. A. Zagzebski, and E. J. Boote, Accurate depth-independent determination of acoustic backscatter coefficients with focused transducers,J. Acoust. Soc. Am. 85:2410–2416 (1989).

    Google Scholar 

  9. F. J. Margetan, T. A. Gray, and R. B. Thompson, A technique for quantitatively measuring microstructurally induced ultrasonic noise, inReview of Progress in Quantitative NDE, Vol. 10B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1991), pp. 1721–1728.

    Google Scholar 

  10. F. J. Margetan and R. B. Thompson, Microstructural noise in titanium alloys and its influence on the detectability of hard-alpha inclusions,Review of Progress in Quantitative NDE, Vol. 11B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1992), pp. 1717–1724.

    Google Scholar 

  11. M. D. Russell, S. P. Neal, and E. J. Boote, Experimental estimation of the longitudinal-wave backscatter coefficients for ultrasonic interrogation of weak scattering materials,J. Acoust. Soc. Am. 93:1267–1276 (1993).

    Google Scholar 

  12. M. D. Russell and S. P. Neal, Experimental estimation of the transverse-wave backscatter coefficients for ultrasonic interrogation of weak scattering materials,J. Acoust. Soc. Am. (to be published).

  13. M. D. Russell and S. P. Neal, Grain noise power spectrum estimation for weak scattering polycrystalline materials using experimentally estimated backscatter coefficients: Normal incidence,Ultrasonics (to be published).

  14. M. D. Russell and S. P. Neal, Grain noise power spectrum estimation for weak scattering polycrystalline materials using experimentally estimated backscatter coefficients: Oblique incidence,Ultrasonics (submitted).

  15. F. J. Margetan, R. B. Thompson, I. Yalda-Mooshabad, and Y. K. Han, Detectability of Small Flaws in Advanced Engine Alloys, U.S. Air Force Technical Report, Center for NDE, Iowa State University, Ames, Iowa (1993).

    Google Scholar 

  16. F. Amin, T. A. Gray, and F. J. Margetan, A new method to estimate the effective geometric focal length and radius of ultrasonic focused probes, inReview of Progress in Quantitative NDE, Vol. 10A, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1991), pp. 861–865.

    Google Scholar 

  17. Specimen PWL was supplied by Pratt & Whitney Aircraft, West Palm Beach, Florida; Specimens A1, A2, B2, and C1 were supplied by General Electric AEBG, Cincinnati, Ohio.

  18. I. Yalda-Mooshabad, F. J. Margetan, and R. B. Thompson, Monte-Carlo simulation of ultrasonic grain noise, inReview of Progress in Quantitative NDE, Vol. 12B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1993), pp. 1727–1734.

    Google Scholar 

  19. R. B. Thompson and T. A. Gray, A model relating ultrasonic scattering measurements through liquid-solid interfaces to unbounded medium scattering amplitudes,J. Acoust. Soc. Am. 74:1279 (1983).

    Google Scholar 

  20. B. A. Auld, General electromechanical reciprocity relations applied to the calculation of elastic wave scattering coefficients,Wave Motion 1:3 (1979).

    Google Scholar 

  21. J. H. Rose, Ultrasonic backscatter from microstructure, inReview of Progress in Quantitative NDE, Vol. 11B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1992), pp. 1677–1684.

    Google Scholar 

  22. J. H. Rose, Theory of ultrasonic backscatter from multiphase polycrystalline solids, inReview of Progress in Quantitative NDE, Vol. 12B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1993), pp. 1717–1726.

    Google Scholar 

  23. R. Bracewell,The Fourier Transform and Its Applications (Chap.12) (McGraw-Hill, New York, 1965).

    Google Scholar 

  24. P. H. Rodgers and A. L. Van Buren, An exact expression for the Lommel diffraction integral,J. Acoust. Soc. Am. 55:724–728 (1974).

    Google Scholar 

  25. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Chap. 9) (Dover, New York, 1965).

    Google Scholar 

  26. R. B. Thompson and T. A. Gray, Range of applicability of inversion algorithms, inReview of Progress in Quantitative NDE, Vol. 1, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1982), pp. 233–249.

    Google Scholar 

  27. R. B. Thompson and E. F. Lopes, The effects of focusing and refraction on Gaussian ultrasonic beams,J. Nondestr. Eval. 4:107 (1984).

    Google Scholar 

  28. B. P. Newberry and R. B. Thompson, A paraxial theory for the propagation of ultrasonic beams in anisotropic solids,J. Acoust. Soc. Am. 85:2290–2300 (1989).

    Google Scholar 

  29. K. Y. Han, R. B. Thompson, F. J. Margetan, and J. H. Rose, Relationship between ultrasonic noise and macrostructure of titanium alloys, inReview of Progress in Quantitative NDE, Vol. 12, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1993), pp. 1743–1750.

    Google Scholar 

  30. J. M. M. Pinkerton, A pulse method for the measurement of ultrasonic absorption in liquids: Results for water,Nature 160:128 (1947).

    Google Scholar 

  31. Yan Li and R. B. Thompson, Relations between elastic constantsC ij and texture parameters for hexagonal materials,J. Appl. Phys. 67(5):2663–2665 (1990).

    Google Scholar 

  32. R. B. Thompson, J. F. Smith, S. S. Lee, and G. C. Johnson, Comparison of ultrasonic and X-ray determinations of texture in thin Cu and Al plates,Metall. Trans. A 20A:2431–2447 (1989).

    Google Scholar 

  33. J. A. Ogilvy, Ultrasonic beam profiles and beam propagation in an austenitic weld using a theoretical ray tracing model,Ultrasonics 24:337 (1986).

    Google Scholar 

  34. F. J. Margetan, R. B. Thompson, and I. Yalda-Mooshabad, Modeling ultrasonic microstructural noise in titanium alloys, inReview of Progress in Quantitative NDE, Vol. 12B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1993), pp. 1735–1742.

    Google Scholar 

  35. F. J. Margetan, R. B. Thompson, and I. Yalda-Mooshabad, Estimating ultrasonic signal-to-noise ratios for inspections of cylindrical billets, inReview of Progress in Quantitative NDE, Vol. 13B, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1994), pp. 1737–1744.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margetan, F.J., Thompson, R.B. & Yalda-Mooshabad, I. Backscattered microstructural noise in ultrasonic toneburst inspections. J Nondestruct Eval 13, 111–136 (1994). https://doi.org/10.1007/BF00728250

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00728250

Key words

Navigation