Skip to main content
Log in

Sensitivity of Thermophysical Material Properties on Solidification Simulation of Al-Si Binary Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The challenges in the numerical simulation of the solidification of binary alloys are not only in the complexity of the algorithms themselves, but also in the validity of the data used to define the material properties of the various phases to obtain a valid simulation. The effect of material properties on the numerical simulations was investigated in the present study wherein the Al-3 wt pct Si hypoeutectic binary alloy was solidified such that the solidification front traveled against the gravity vector (upward solidification). Numerical simulations were carried out with a new algorithm that was developed to include the effect of undercooling of the liquid temperature prior to the solidification event. The effect of specific heat of solid, density of solid, solute diffusivity coefficient of liquid, and thermal conductivity of solid on transient temperature distribution and solidification start time at mushy zone/liquid interface was investigated. It was found that specific heat and thermal conductivity of the solid could not be assumed as constants, whereas most properties in the liquid phase could be assumed as constants for the temperature range used in the study and the experiments used for validation (low initial melt superheat temperature). These properties were enumerated and quantified. The results of the numerical simulations using the optimum set of material properties were validated by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. JMATPRO is a trademark of Sente Software Ltd., Guildford, United Kingdom.

  2. FACTSAGE is a trademark of Computherm LLC, Madison, WI.

Abbreviations

c ps :

specific heat of solid as a function of temperature (J Kg−1 K−1)[1]

c pl :

specific heat of liquid (J Kg−1 K−1)[1]

C L :

liquid concentration (wt pct)

C o :

average alloy composition (wt pct)

C S :

solid concentration (wt pct)

D :

solute diffusivity coefficient of liquid (m2 s−1);[2]

G :

temperature gradient in liquid at the liquid-mushy zone interface (K mm−1)

k :

average partition coefficient[3]

K s :

thermal conductivity of solid as a function of temperature (W m−1 K−1)[1]

K l :

thermal conductivity of liquid (W m−1 K−1)[1]

L :

latent heat of fusion (J Kg−1)[3]

m :

slope of liquidus line (K wt pct−1)[3]

R :

velocity of liquid-mushy zone interface (mm s−1)

t :

time (s)

T :

temperature (°C)

T liq :

liquidus temperature (°C)[3]

T ini :

initial temperature of liquid (°C)

T m :

melting temperature of pure Al (°C)[3]

T eut :

eutectic temperature (°C)[3]

T ambient :

temperature of cooling water (°C)

ΔT :

undercooling of T liq (°C)

β :

contraction ratio \( \left[ {\beta = {\frac{{\rho_{s} - \rho_{l} }}{{\rho_{l} }}}} \right] \)(volumetric shrinkage during solidification)

\( \phi \) :

liquid fraction

ρ l :

liquid density (Kg m−3)[1]

ρ s :

solid density as a function of temperature (Kg m−3)[1]

References

  1. JMatPro, version 4.1, Sente Software Ltd., Guildford, United Kingdom, 2007.

  2. D.P. Sekulic, P.K. Galenko, M.D. Krivilyov, L. Walker, and F. Gao: Int. J. Heat Mass Transfer, 2005, vol. 48, pp. 2385–96.

    Article  CAS  Google Scholar 

  3. Factsage, version 5.5, Computherm LLC, Madison, WI, 2007.

  4. H. Wang: P.D. Thesis, McMaster University, Hamilton, ON, Canada, 2009.

  5. M.D. Peres, C.A. Siqueira, and A. Garcia: J. Alloys Compd., 2004, vol. 381, pp. 168–81.

    Article  CAS  Google Scholar 

  6. V.R. Voller and C. Prakash: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 1709–19.

    Article  CAS  Google Scholar 

  7. W.D. Bennon and F.P. Incropera: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2161–70.

    Article  CAS  Google Scholar 

  8. W.D. Bennon and F.P. Incropera: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2171–78.

    Article  CAS  Google Scholar 

  9. W.D. Bennon and F.P. Incropera: Numer. Heat Transfer, 1988, vol. 13, pp. 277–96.

    Article  Google Scholar 

  10. M.C. Schneider and C. Beckermann: Appl. Math. Model., 1991, vol. 15 (11–12), pp. 596–605.

    Article  Google Scholar 

  11. S.D. Felicelli, J.C. Heinrich, and D.R. Poirier: Metall. Trans. B, 1991, vol. 22B, pp. 847–59.

    Article  CAS  Google Scholar 

  12. S.D. Felicelli, J.C. Heinrich, and D.R. Poirier: Numer. Heat Transfer, Part B: Fundamentals, 1993, vol. 23, pp. 461–81.

    Article  CAS  Google Scholar 

  13. E. McBride, J.C. Heinrich, and D.R. Poirier: Int. J. Numer. Methods Fluids, 1999, vol. 31, pp. 787–800.

    Article  Google Scholar 

  14. J.C. Heinrich and D.R. Poirier: Modell. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 881–99.

    Article  CAS  Google Scholar 

  15. M.C. Flemings: Solidification Processing, McGraw-Hill Book Co., New York, NY, 1974.

    Google Scholar 

  16. M.H. Burden and J.D. Hunt: J. Cryst. Growth, 1974, vol. 22, pp. 99–108.

    Article  CAS  Google Scholar 

  17. M.H. Burden and J.D. Hunt: J. Cryst. Growth, 1974, vol. 22, pp. 109–16.

    Article  CAS  Google Scholar 

  18. T. Magnusson and L. Arnberg: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2605–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. Hamed.

Additional information

Manuscript submitted July 6, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Shankar, S. & Hamed, M.S. Sensitivity of Thermophysical Material Properties on Solidification Simulation of Al-Si Binary Alloys. Metall Mater Trans A 42, 2346–2357 (2011). https://doi.org/10.1007/s11661-011-0617-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0617-z

Keywords

Navigation