Skip to main content

Advertisement

Log in

Effect of Hydrogen on Tensile Properties of Ultrafine-Grained Type 310S Austenitic Stainless Steel Processed by High-Pressure Torsion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study addresses a hydrogen effect on the tensile properties of a type 310S austenitic stainless steel with ultrafine-grained structures produced by high-pressure torsion (HPT) and subsequent annealing. The mean grain size was reduced to ~85 nm by the HPT processing. The grain size was increased by the post-HPT annealing, but the grain size of ~265 nm was retained after annealing at 1023 K (750 °C). The tensile strength of ~1.2 GPa, which is approximately twice as much as that of the solution-treated specimen, was attained in the 1023 K (750 °C) post-HPT-annealed specimen. The elongation to failure was restored up to ~15 pct by the post-HPT annealing, although it was still insufficient in comparison with the ~55 pct elongation of the solution-treated specimen. There was no change in the tensile strength of the HPT-processed specimens and the post-HPT-annealed specimens by hydrogen charging with the hydrogen content in the range of ~20 to 40 mass ppm. The HPT-processed and the 773 K (500 °C) post-HPT-annealed specimens exhibited a ductility loss through the fully shear type fracture. The hydrogen charge into higher temperature post-HPT-annealed specimens with σ-FeCr precipitates led to a mild hydrogen embrittlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.M. Vennett and G.S. Ansell: Trans. Am. Soc. Met., 1967, vol. 60, pp. 242-51.

    CAS  Google Scholar 

  2. R.B. Benson Jr., R.K. Dann, and L.W. Roberts Jr.: Trans. TMS-AIME, 1968, vol. 242, pp. 2199–205.

  3. D. Eliezer, D.G. Chakrapani, C.J. Altstetter, and E.N. Pugh: Metall. Trans. A, 1979, vol. 10A, pp. 935-41.

    CAS  Google Scholar 

  4. S. Singh and C. Altstetter: Metall. Trans. A, 1982, vol. 13A, pp. 1799-808.

    Google Scholar 

  5. D.G. Ulmer and C.J. Altstetter: Acta Metall. Mater., 1991, vol. 39, pp. 1237-48.

    Article  CAS  Google Scholar 

  6. D.P. Abraham and C.J. Altstetter: Metall. Trans. A, 1995, vol. 26A, pp. 2849-58.

    Article  CAS  Google Scholar 

  7. D.P. Abraham and C.J. Altstetter: Metall. Trans. A, 1995, vol. 26A, pp. 2859-71.

    Article  CAS  Google Scholar 

  8. A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci., 2008, vol. 53, pp. 893-979.

    Article  CAS  Google Scholar 

  9. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, J. Zehetbauer, and Y.T. Zhu: JOM, 2006, vol. 58, pp. 33–39.

    Article  Google Scholar 

  10. Y. Mine, Z. Horita, and Y. Murakami: Acta Mater., 2010, vol. 58, pp. 649-57.

    Article  CAS  Google Scholar 

  11. Y. Mine, T. Tsumagari, and Z. Horita: Scripta Mater., 2010, vol. 63, pp. 552–55.

    Article  CAS  Google Scholar 

  12. Y. Mine, K. Tachibana, and Z. Horita: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3110–20.

    Article  Google Scholar 

  13. Y. Mine, Z. Horita, and Y. Murakami: Acta Mater., 2009, vol. 57, pp. 2993-3002.

    Article  CAS  Google Scholar 

  14. Y.K. Lee, J.E. Jin, and Y.Q. Ma: Scripta Mater., 2007, vol. 57, pp. 707-10.

    Article  CAS  Google Scholar 

  15. A.V. Panin, A.A. Panina, and Y.F. Ivanov: Mater. Sci. Eng. A, 2008, vol. 486, pp. 267-72.

    Article  Google Scholar 

  16. R.J. Price and A. Kelly: Acta Metall., 1964, vol. 12, pp. 979-92.

    Article  CAS  Google Scholar 

  17. E. Lunarska and A. Mikeladze: Int. J. Hydrogen Energ., 1997, vol. 22, pp. 131–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the NEDO, Fundamental Research Project on Advanced Hydrogen Science (2006 to 2012). A part of this research was carried out within the frame of Kyushu University Interdisciplinary Programs in Education and Projects in Research Development (P&P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoji Mine.

Additional information

Manuscript submitted August 6, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mine, Y., Tachibana, K. & Horita, Z. Effect of Hydrogen on Tensile Properties of Ultrafine-Grained Type 310S Austenitic Stainless Steel Processed by High-Pressure Torsion. Metall Mater Trans A 42, 1619–1629 (2011). https://doi.org/10.1007/s11661-010-0558-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0558-y

Keywords

Navigation