Skip to main content

Advertisement

Log in

Effect of High-Pressure Torsion Processing and Annealing on Hydrogen Embrittlement of Type 304 Metastable Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of high-pressure torsion (HPT) and annealing on hydrogen embrittlement (HE) of a type 304 stainless steel was studied by metallographic characterization and tensile test after hydrogen gas charging. A volume fraction of ~78 pct of the austenite transformed to α′ martensite by the HPT processing at an equivalent strain of ~30. Annealing the HPT-processed specimen at a temperature of 873 K (600 °C) for 0.5 hours decreased the α′ martensite to ~31 pct with the average grain size reduced to ~0.43 μm through the reverse austenitic transformation. Hydrogen charge into the HPT-processed and the HPT+annealed specimens in the hydrogen content of ~10 to 20 ppm led to no severe HE but appeared in the solution-treated specimen. Especially the 873 K (600 °C) annealed specimen had the ~1.4 GPa tensile strength and the ~50 pct reduction of area (RA) despite the hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. A.P. Zhilyaev and T.G. Langdon: Progr. Mater. Sci., 2008, vol. 53, pp. 893–979.

    Article  CAS  Google Scholar 

  2. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, J. Zehetbauer, and Y.T. Zhu: JOM, 2006, vol. 58, pp. 33–39.

    Article  Google Scholar 

  3. K. Farrell and A.G. Quarrell: J. Iron Steel Inst., 1964, vol. 202, pp. 1002–11.

    CAS  Google Scholar 

  4. R.M. Vennett and G.S. Ansell: Trans. Am. Soc. Met., 1967, vol. 60, pp. 242–51.

    CAS  Google Scholar 

  5. R.B. Benson, Jr., R.K. Dann, and L.W. Roberts, Jr.: Trans. TMS-AIME, 1968, vol. 242, pp. 2199–2205.

    CAS  Google Scholar 

  6. M.R. Louthan, Jr., G.R. Caskey, Jr., J.A. Donovan, and D.E. Rawl, Jr.: Mater. Sci. Eng., 1972, vol. 10, pp. 357–68.

    Article  CAS  Google Scholar 

  7. A.W. Thomson: Mater. Sci. Eng., 1974, vol. 14, pp. 253–64.

    Article  MathSciNet  Google Scholar 

  8. C.L. Briant: Metall. Trans. A, 1979, vol. 10A, pp. 181–89.

    CAS  ADS  Google Scholar 

  9. D. Eliezer, D.G. Chakrapani, C.J. Altstetter, and E.N. Pugh: Metall. Trans. A, 1979, vol. 10A, pp. 935–41.

    CAS  ADS  Google Scholar 

  10. S. Singh and C. Altstetter: Metall. Trans. A, 1982, vol. 13A, pp. 1799–1808.

    ADS  Google Scholar 

  11. T.-P. Perng and C.J. Altstetter: Metall. Trans. A, 1987, vol. 18A, pp. 123–34.

    CAS  ADS  Google Scholar 

  12. D.G. Ulmer and C.J. Altstetter: Acta Metall. Mater., 1991, vol. 39, pp. 1237–48.

    Article  CAS  Google Scholar 

  13. J.R. Buckley and D. Hardie: Corros. Sci., 1993, vol. 34, pp. 93–107.

    Article  CAS  Google Scholar 

  14. S. Fukuyama, K. Yokogawa, K. Kudo, and M. Araki: Trans. Jpn. Inst. Met., 1985, vol. 26, pp. 325–31.

    Google Scholar 

  15. C. San Marchi, B.P. Somerday, X. Tang, and G.H. Schiroky: Int. J. Hydrogen Energy, 2008, vol. 33, pp. 889–904.

    Article  CAS  Google Scholar 

  16. T. Matsuo, J. Yamabe, S. Matsuoka, and Y. Murakami: Effects of Hydrogen on Materials, B. Somerday, P. Sofronis, and R. Jones, eds., ASM INTERNATIONAL, Materials Park, OH, 2009, pp. 105–12.

    Google Scholar 

  17. Y. Mine, T. Kimoto, S. Matsuoka, and Y. Murakami: Kyushu University, Fukuoka, unpublished research, 2010.

  18. T. Kanezaki, Y. Mine, Y. Fukushima, and Y. Murakami: Trans. Jpn. Soc. Mech. Eng. A, 2006, vol. 72, pp. 653–60 (in Japanese).

    CAS  Google Scholar 

  19. T.-P. Perng and C.J. Altstetter: Metall. Trans. A, 1988, vol. 19A, pp. 145–52.

    CAS  ADS  Google Scholar 

  20. Y. Mine, Z. Horita, and Y. Murakami: Acta Mater., 2009, vol. 57, pp. 2993–3002.

    Article  CAS  Google Scholar 

  21. Y. Mine, Z. Horita, and Y. Murakami: Acta Mater., 2010, vol. 58, pp. 649–57.

    Article  CAS  Google Scholar 

  22. A.H. Cottrell: Dislocations and Plastic Flow in Crystals, 1st ed., Oxford University Press, London, 1953, p. 139.

    MATH  Google Scholar 

  23. S.V. Dobatkin, O.V. Rybal’chenko, and G.I. Raab: Mater. Sci. Eng. A, 2007, vol. 463, pp. 41–45.

    Article  Google Scholar 

  24. N. Tsuji, N. Kamikawa, R. Ueji, N. Takata, H. Koyama, and D. Terada: Inst. Steel Iron Jpn. Int., 2008, vol. 48, pp. 1114–21.

    CAS  Google Scholar 

  25. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Scripta Mater., 2002, vol. 47, pp. 893–99.

    Article  CAS  Google Scholar 

  26. T.-P. Perng and C.J. Altstetter: Acta Metall., 1986, vol. 34, pp. 1771–81.

    Article  CAS  Google Scholar 

  27. A. Demarez, A.G. Hock, and F.A. Meunier: Acta Metall., 1954, vol. 2, pp. 214–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the NEDO, Fundamental Research Project on Advanced Hydrogen Science (2006 to 2012). Portions of this research are included in Kyushu University Interdisciplinary Programs in Education and Projects in Research Development (P&P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoji Mine.

Additional information

Manuscript submitted February 17, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mine, Y., Tachibana, K. & Horita, Z. Effect of High-Pressure Torsion Processing and Annealing on Hydrogen Embrittlement of Type 304 Metastable Austenitic Stainless Steel. Metall Mater Trans A 41, 3110–3120 (2010). https://doi.org/10.1007/s11661-010-0394-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0394-0

Keywords

Navigation