Skip to main content
Log in

Influence of Crystallography on Ferrite Nucleation at Austenite Grain-Boundary Faces, Edges, and Corners in a Co-15Fe Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The nucleation of ferrite precipitates at austenite grain faces, edges (triple lines), and corners (quadruple points) was studied in a Co-15Fe alloy in which the matrix phase was retained upon cooling to room temperature by serial sectioning coupled with electron backscatter diffraction analysis. Nearly half of the edges and corners were vacant at an undercooling of 60 K from the γ/(α + γ) boundary where the precipitation occurred significantly at grain faces. A significant proportion of precipitates had Kurdjumov–Sachs (K–S) and to a lesser extent Nishiyama–Wassermann (N–W) orientation relationships with more than one grain at all boundary sites. Vacant edges and corners were readily observed, of which the misorientations of matrix grain boundaries would permit a precipitate to have a specific orientation relationship with multiple grains. Small differences in the nucleation activation energy among the grain faces, edges, and corners may lend support to a view proposed from experiments of nucleation in Fe-C base alloys that ferrite nuclei are more or less surrounded by low-energy facets of α/γ phase boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. According to Cahn,[17] the number of edges and corners per unit volume can be calculated from the equations, \( 24/\bar{D}^{3} \) and \( 12/\bar{D}^{3} \), respectively, where \( \bar{D} \) is the mean grain size, and the former equation is a result of the observation that four edges are associated with one corner and each edge is shared by two neighbor corners. Multiplying the sample volume V (= 1.8 × 105 μm3) yields 74 and 37. These values may be somewhat smaller considering the geometrical factor between \( \bar{D} \) and \( \bar{\ell } \).[18]

  2. The crystallographic direction of edge line was not determined in this experiment because the horizontal alignment by means of hardness indentation could not be made with sufficient accuracy.

  3. This value is somewhat greater than that reported earlier[26] because in the previous report the site density and the interfacial energy were evaluated simultaneously from the temperature dependence of measured nucleation rates.

References

  1. P.C. Clemm and J.C. Fisher: Acta. Metall., 1955, vol. 3, pp. 70-73.

    Article  CAS  Google Scholar 

  2. J.M. Howe: Interfaces in Materials, Wiley, New York, NY, 1997, p. 377.

    Google Scholar 

  3. T. Furuhara, K. Oishi, and T. Maki: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2327-35.

    Article  CAS  Google Scholar 

  4. Y. Adachi, K. Hakata, and K. Tsuzaki: Mater. Sci. Eng. A, 2005, vol. 412A, pp. 252-63.

    Google Scholar 

  5. A.D. King and T. Bell: Metall. Trans. A, 1975, vol. 6A, pp. 1419-29.

    CAS  Google Scholar 

  6. P.L. Ryder and W. Pitsch: Acta Metall., 1966, vol. 14, pp. 1437-48.

    Article  CAS  Google Scholar 

  7. P.L. Ryder, W. Pitsch, and R.F. Mehl: Acta Metall., 1967, vol. 15, pp. 1431-40.

    Article  Google Scholar 

  8. C.P. Luo and G.C. Weatherly: Acta Metall., 1989, vol. 37, pp. 791-801.

    Article  CAS  Google Scholar 

  9. T. Furuhara, K. Wada, and T. Maki: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1971-78.

    Article  CAS  Google Scholar 

  10. K. Ameyama, T. Maki, and I. Tamura: J. Jpn. Inst. Met., 1986, vol. 50, pp. 602-11.

    CAS  Google Scholar 

  11. H. Landheer, S.E. Offerman, R.H. Petrov, and L.A.I. Kestens: Acta Mater., 2009, vol. 57, pp. 1486-96.

    Article  CAS  Google Scholar 

  12. G.W. Parker and D.H. Kirkwood: Chemical Metallurgy in Iron and Steel, Iron and Steel Institute, London, UK, 1973, pp. 248-54.

    Google Scholar 

  13. C.J. Middleton and G.W. Form: Met. Sci., 1975, vol. 9, pp. 521-28.

    Google Scholar 

  14. W.F. Lange III and H.I. Aaronson: Metall. Trans. A, 1979, vol. 10A, pp. 1951-52.

    CAS  Google Scholar 

  15. W. Huang and M. Hillert: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 480-83.

    Article  CAS  Google Scholar 

  16. G.H. Zhang, T. Takeuchi, M. Enomoto, and Y. Adachi: Proc. Int. Conf. on Solid→ Solid Phase Transformations, Avignon, France, 2010.

    Google Scholar 

  17. J.W. Cahn: Acta Metall., 1956, vol. 4, pp. 449-59.

    Article  CAS  Google Scholar 

  18. R.L. Fullman: Trans. AIME, 1953, vol. 197, pp. 447-52.

    CAS  Google Scholar 

  19. A.B. Greninger and A.R. Troiano: Trans. AIME, 1949, vol. 185, pp. 590-98.

    Google Scholar 

  20. Y. He, S. Godet, and J.J. Jonas: J. Appl. Crystallogr., 2006, vol. 39, pp. 72-81.

    Article  CAS  Google Scholar 

  21. H. Landheer, S.E. Offerman, L.A.I. Kestens, T. Takeuchi, M. Enomoto, and Y. Adachi: Ceram Trans., 2008, vol. 201, pp. 305-11.

    Google Scholar 

  22. R. Monzen, K. Kitagawa, M. Kato, and T. Mori: J. Jpn. Inst. Met., 1990, vol. 54, 1308-13.

    CAS  Google Scholar 

  23. C.S. Smith: Trans. AIME, 1953, vol. 45, pp. 533-75.

    CAS  Google Scholar 

  24. T. Nagano and M. Enomoto: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 929-37.

    Article  CAS  Google Scholar 

  25. M. Enomoto and J.B. Yang: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 994-1002.

    Article  CAS  Google Scholar 

  26. W.F. Lange, III, M. Enomoto, and H.I. Aaronson: Metall. Trans. A, 1988, 19A, pp. 427–40.

  27. M. Enomoto, W.F. Lang, III, and H.I. Aaronson: Metall. Trans. A, vol. 17A, 1986, pp. 1399–07.

  28. S.E. Offerman, N.H. van Dijk, J. Sietsma, S. van der Zwaag, E.M. Lauridsen, L. Margulies, S. Grigull, and H.F. Poulsen: Science, 2002, vol. 298, pp. 1003–08.

  29. S.E. Offerman, N.H. van Dijk, J. Sietsma, E.M. Lauridsen, L. Margulies, S. Grigull, H.F. Poulsen, and S. van der Zwaag: NIB, 2006, vol. 246, pp. 194–200.

Download references

Acknowledgment

One of the authors (G.H. Zhang) acknowledges the support from the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Enomoto.

Additional information

Manuscript submitted March 7, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G.H., Takeuchi, T., Enomoto, M. et al. Influence of Crystallography on Ferrite Nucleation at Austenite Grain-Boundary Faces, Edges, and Corners in a Co-15Fe Alloy. Metall Mater Trans A 42, 1597–1608 (2011). https://doi.org/10.1007/s11661-010-0554-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0554-2

Keywords

Navigation