Skip to main content
Log in

A Study of the Method of Manufacturing Bimaterial Composite Parts through Semisolid Metal Processing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work evaluated the method of manufacturing bimaterial composite parts by semisolid metal processing (SSP) through strain-induced melt-activated thixo-forging. Sn-15 pct Pb and Pb-30 pct Sn semisolid alloys were chosen as model alloys. Bimetal composite parts were manufactured successfully by forging the semisolid alloys into the same die simultaneously. Optical photography, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Vickers hardness were employed to characterize the samples. The results showed that the composite semisolid fluid flowed in a laminar way. Globular primary grains in the two semisolid alloys maintained their respective geometry and constitutions. The mixture of two liquid phases was limited in a thin layer beneath the interface between the two semisolid alloys. The absence of an oxide-enriched layer at the interface suggests that the oxide skins of the feedstock were torn during the processing, leading to the formation of metallurgical bonding at the composite interface. This work showed that SSP is a promising technology for bimaterial/multimaterial composite manufacturing. The bimaterial composite parts achieved by SSP have a good composite interface and well-located material distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.C. Flemings: Metall. Trans. A, 1991, vol. 22A, pp. 957-68.

    CAS  Google Scholar 

  2. D.H. Kirkwood: Inter. Mater. Rev., 1994, vol. 39, pp. 173-85.

    CAS  Google Scholar 

  3. Z. Fan: Inter. Mater. Rev., 2002, vol. 43, pp. 548-91.

    Google Scholar 

  4. D. Liu, H.V. Atkinson, P. Kapranos, W. Jirattiticharoean, and H. Jones: Mater. Sci. Eng. A, 2003, vol. A361, pp. 213-24.

    CAS  Google Scholar 

  5. T.K. Nandy, R.M. Messing, J.W Jones, T.M. Pollock, D.M. Walukas, and R.F. Decker: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3725-36.

    Article  CAS  Google Scholar 

  6. P. Rohatgi and R. Asthana: JOM, 2001, vol. 53, pp. 9-14.

    Article  CAS  Google Scholar 

  7. M.Z. Omar, E.J. Palmiere, A.A. Howe, H.V. Atkinson, and P. Kapranos: Mater. Sci. Eng. A, 2005, vol. 395, pp. 53-61.

    Article  Google Scholar 

  8. M. Haesche, J. Weise, F. Garcia-Moreno, and J. Banhart: Mater. Sci. Eng. A, 2008, vol. 480, pp. 283-88.

    Article  Google Scholar 

  9. Z. Yang, H.F. Zhang, A.M. Wang, B.Z. Ding, and Z.Q. Hu: 7th Conf. Semisolid Metal Process Composite TSUKUBA, Japan, 2002, pp. 846–50.

  10. W. Yoshimi, Y. Kazuhisa, F. Yasuyoshi, and M. Koichi: Mater Sci. Forum, 2005, vol. 475-479, pp. 1503-09.

    Google Scholar 

  11. S. Sugiyama, M. Kiuchi, and J. Yanagimoto: J. Mater. Process. Tech., 2008, vol. 201, pp. 623-28.

    Article  CAS  Google Scholar 

  12. A. Narimannezhad, H. Aashuri, A.H. Kokabi, and A. Khosravani: J. Mater. Process. Tech., 2009, vol. 209, pp. 4112-21.

    Article  CAS  Google Scholar 

  13. P. Kazanowski, M.E. Epler, and W.Z. Misiolek: Mater. Sci. Eng. A, 2004, vol. 369, pp. 170-80.

    Article  Google Scholar 

  14. D. Rydz: J. Mater. Process. Tech., 2004, vol. 157-158, 609-12.

    Article  CAS  Google Scholar 

  15. D. Rydz, H. Dyja, and M. Krakowiak: J. Mater. Process. Tech., 2003, vol. 138, pp. 120-22.

    Article  CAS  Google Scholar 

  16. M.H. Apperley, C.C. Sorrell, and A. Crosky: J. Mater. Process. Tech., 2000, vol. 102, pp. 193-202.

    Article  Google Scholar 

  17. Z. Yang: Chinese Patent CN200810143703.4, 2008.

  18. L. Zhou, Z. Yang, and W. Zhang: Ann. Conf. Die Cast., Squeeze Cast. and SSP, pp. 422 (in Chinese).

  19. K.P. Young, C.P. Kyonka, M. Heights, and J.A. Courtois: U.S. Patent, 4,415,374, 1983.

  20. B. Predel: Landolt-Bornstein, Group IV Physical Chemistry – Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, vol. 5, Springer Verlag, New York, NY, 1991.

  21. Z. Yang, C.G. Kang, and P.K. Seo: Scripta Mater., 2005, vol. 52, pp. 283-88.

    Article  CAS  Google Scholar 

  22. ASTM E1245-95, “Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis.”

  23. E. Tzimas and A. Zavaliangos: Acta Mater., 1999, vol. 47, pp. 517-28.

    Article  CAS  Google Scholar 

  24. M. Kiuchi and R. Kopp: CIRP Ann. Manuf. Tech., 2002, vol. 51, pp. 653-70.

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the Graduate Student Education Funding from Grant 1343-71333000469 provided by Graduate Student School, Central South University. The authors are grateful for the help from Professor Z.Q. Ma and G.F. Xu, and from Engineers Q.S. Tan, Y.J. Chen, M.C. Huang, and Dr. L.Z. Tan, and L.H. Qian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Yang.

Additional information

Manuscript submitted April 1, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Dong, J., Zhou, L. et al. A Study of the Method of Manufacturing Bimaterial Composite Parts through Semisolid Metal Processing. Metall Mater Trans A 42, 1709–1716 (2011). https://doi.org/10.1007/s11661-010-0550-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0550-6

Keywords

Navigation