Skip to main content
Log in

Chromia-Assisted Decarburization of W-Rich Ni-Based Alloys in Impure Helium at 1273 K (1000 °C)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure and surface stability of two experimental W-rich Ni-based alloys have been studied at 1273 K (1000 °C) in an impure-He environment containing only CO and CO2 as impurities. The alloy Ni-2.3Al-12Cr-12W contained 0.08 wt pct carbon in solution, whereas the second alloy Ni-2.3Al-3Mo-12Cr-12Co-12W contained M6C carbides at the same carbon level. Both alloys, which were preoxidized with ~2.3 μm Cr2O3 layer, were decarburized completely within 50 hours of exposure to the helium gas mixture at 1273 K (1000 °C) via the following chromia-assisted decarburization reaction: Cr2O3 (s) + 3Calloy (s) → 2Cr (s) + 3CO (g). Microstructural observations, bulk carbon analysis, and microprobe measurements confirmed that the carbon in solid solution reacted with the surface chromium oxide resulting in the simultaneous loss of chromia and carbon. The Cr produced by the decomposition of the Cr2O3 diffused back into the alloy, whereas CO gas was released and detected by a gas chromatograph. Once the alloy carbon content was reduced to negligible levels, subsequent exposure led to the uninterrupted growth of Cr2O3 layer in both alloys. In the preoxidized alloys, chromia-assisted decarburization rates were slower for an alloy containing carbides compared with the alloy with carbon in solid solution only. The formation of Cr2O3 is shown to be the rate-limiting step in the chromia-assisted decarburization reaction. Exposure of as-fabricated alloys to the impure-He environment led to the formation of a thin layer of Al2O3 (<1 μm) between the substrate and surface Cr2O3 oxide that inhibited this decarburization process by acting as a diffusion barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A Technology Roadmap for Generation IV Nuclear Energy Systems, U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, 2002.

  2. G..O. Hayner, R.L. Bratton, R.E. Mizia, and W.E. Windes: INL/EXT-06-11701, Idaho National Laboratory, Idaho Falls, ID, 2006.

  3. E.A. Harvego: INL/EXT-06-11109, Idaho National Laboratory, Idaho Falls, ID, 2006.

  4. R.N. Wright: INL/EXT-06-11750, Idaho National Laboratory, Idaho Falls, ID, 2006.

  5. R.N. Wright: INL/EXT-06-11494, Idaho National Laboratory, Idaho Falls, ID, 2006.

  6. B.H. Kear and D.P. Pope: Refractory Alloying Elements in Superalloys, K.T. John and S. Reichman, eds., ASM, Materials Park, OH, 1984, pp. 135–51.

  7. F.R.N. Nabarro: Mater. Sci. Eng. A, 1994, vol. 184, pp. 167-71.

    Article  CAS  Google Scholar 

  8. T.M. Pollock and S. Tin: J. Propul. Power, 2006, vol. 22, no. 2, pp. 361-74.

    Article  CAS  Google Scholar 

  9. M.S.A. Karunaratne and R.C. Reed: Acta Mater., 2003, vol. 51, pp. 2905-19.

    CAS  Google Scholar 

  10. C.L. Fu, R. Reed, A. Janotti, and M. Krcmar: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS, Seven Springs, PA, 2004, pp, 867–75.

  11. W.S. Walston, K.S. O’Hara, E.W. Ross, T.M. Pollock, and W.H. Murphy: Superalloys 1996, R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford, eds., TMS, Seven Springs, PA, 1996, pp. 27–34.

  12. G.L. Erickson: Superalloys 1996, R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford, eds., TMS, Seven Springs, PA, 1996, pp. 35–44.

  13. T.M. Pollock and R.D. Field: Dislocations in Solids, vol. 13, F.R.N. Nabarro and M.S. Duesery, eds., Elsevier Science, Atlanta, GA, 2002, pp. 547–618.

  14. L.R. Liu, T. Jin, N.R. Zhao, Z.H. Wang, X.F. Sun, H.R. Guan, and Z.Q. Hu: Mater. Sci. Eng. A, 2004, vol. 385, pp. 105-12.

    Article  Google Scholar 

  15. Q.Z. Chen, C.N. Jones, and D.M. Knowles: Mater. Sci. Eng. A, 2004, vol. 385, pp. 402-18.

    Google Scholar 

  16. H. Nickel, T. Kondo, and P.L. Rittenhouse: Nucl. Tech., 1984, vol. 66, pp. 12-22.

    Google Scholar 

  17. H. Nickel, F. Schubert, and H. Schuster: Nucl. Eng. Des., 1984, vol. 78, pp. 251-65.

    Article  CAS  Google Scholar 

  18. R. Tanaka and T. Kondo: Nucl. Tech., 1984, vol. 66, no. 1, p. 75.

    CAS  Google Scholar 

  19. T. Matsuo, M. Ueki, M. Takeyama, and R. Tanaka: J. Mater. Sci., 1987, vol. 22, p. 1901.

    Article  CAS  Google Scholar 

  20. E. Bodmann, H. Diehl, I. Blume-Firla, and H. Demus: High Temperature Metallic Materials for Gas-Cooled Reactors, International Atomic Energy Agency, Vienna, Austria, 1988, p. 15.

    Google Scholar 

  21. H. Nickel, F. Schubert, H. Breitling, and E. Bodmann: Nucl. Eng. Des., 1990, vol. 121, no. 2, pp. 183-92.

    Article  CAS  Google Scholar 

  22. T. Matsuo, M. Kikuchi, and M. Takeyama: Proc. of the First International Conference, Fontana, WI, 1991, p. 601.

  23. H. Nickel, E. Bodmann, and H.J. Seehafer: Energy, 1991, vol. 16, nos. 1–2 p. 221-42.

    Article  CAS  Google Scholar 

  24. P. Combrade and D. Kaczorowski: Review of the Gas/Ni-Base Alloys Interactions in HTR Impure Helium, FRAMATOME ANP, TFCCR 02-1214, 2003.

  25. K. Natesan, A. Purohit, and S.W. Tam: NUREG/CR-6824, ANL-02/37, Argonne National Laboratory, Argonne, IL, 2003.

    Google Scholar 

  26. Y. Muto, H. Nakajima, and M. Eto: Nucl. Eng. Des., 1993, vol. 144, pp. 305-15.

    Article  CAS  Google Scholar 

  27. H.J. Christ, D. Schwanke, T. Uihlein, and H.G. Sockel: Oxid. Met., 1988, vol. 30, pp. 1-26.

    Article  CAS  Google Scholar 

  28. T. Hirano, H. Araki, and H. Yoshida: J. Nucl. Mater., 1981, vol. 97, p. 272.

    Article  CAS  Google Scholar 

  29. W.J. Quadakkers and H. Schuster: Nucl. Tech., 1984, vol. 66, p. 383.

    CAS  Google Scholar 

  30. M. Cappelaere, M. Perrot, and J. Sannier: Nucl. Tech., 1984, vol. 66, pp. 465-78.

    CAS  Google Scholar 

  31. H.G.A. Bates: Nucl. Tech., 1984, vol. 66, p. 415.

    CAS  Google Scholar 

  32. H-J. Christ, U. Kunecke, K. Meyer, and H.G. Sockel: Mater. Sci. Eng., 1987, vol. 87, pp. 161-68.

    Article  CAS  Google Scholar 

  33. L.W. Graham: J. Nucl. Mater., 1990, vol. 171, pp. 76-83.

    Article  CAS  Google Scholar 

  34. C. Cabet, A. Terlain, P. Lett, L. Guétaz, and J-M. Gentzbittel: Mater. Corros., 2006, vol. 57, no. 2, p. 147.

    Article  CAS  Google Scholar 

  35. J. Chapovaloff, D. Kaczorowski, and G. Girardin: Mater. Corros., 2008, vol. 59, no. 7, pp. 584-90.

    Article  CAS  Google Scholar 

  36. C. Cabet, J. Chapovaloff, F. Rouillard, G. Girardin, D. Kaczorowski, K. Wolski, and M. Pijolat: J. Nucl. Mater., 2008, vol. 375, pp. 173-84.

    Article  CAS  Google Scholar 

  37. F. Rouillard, C. Cabet, K. Wolski, A. Terlain, M. Tabarant, M. Pijolat, and F. Valdivieso: J. Nucl. Mater., 2007, vol. 362, pp. 248-52.

    Article  CAS  Google Scholar 

  38. F. Rouillard, C. Cabet, K. Wolski, and M. Pijolat: Oxid. Met., 2007, vol. 68, pp. 133-48.

    Article  CAS  Google Scholar 

  39. I. Mutoh, Y. Nakasone, K. Hiraga, and T. Tanabe: J. Nucl. Mater., 1993, vol. 207, p. 212.

    Article  CAS  Google Scholar 

  40. Y. Shida, H. Fujikawa, and Y. Sawaragi: Corrosion Sci., 1993, vol. 34, no. 7, pp. 1157-71.

    Article  CAS  Google Scholar 

  41. M. Shindo and M. Nakajima: J. Nucl. Mater., 1989, vol. 166, pp. 278-86.

    Article  CAS  Google Scholar 

  42. R.R. Adharapurapu, L. Liu, and T.M. Pollock: Oxid. Met., in press.

  43. H.J. Christ, U. Kunecke, K. Meyer, and H.G. Sockel: Oxid. Met., 1988, vol. 30, p. 27.

    Article  CAS  Google Scholar 

  44. R.N. Wright: INL/EXT-06-11494, Idaho National Laboratory, Idaho Falls, ID, 2006.

  45. W.J. Quadakkers: Werkst. Korros., 1985, vol. 36, pp. 335-47.

    Article  CAS  Google Scholar 

  46. M.R. Warren: High Temp., 1986, vol. 4, no. 3, pp. 119-30.

    CAS  Google Scholar 

  47. K.G.E. Brenner and L.W. Graham: Nucl. Tech., 1984, vol. 66, pp. 404-14.

    CAS  Google Scholar 

  48. W.J. Quadakkers and H. Schuster: Werkst. Korros., 1985, vol. 36, p. 141-50.

    Article  CAS  Google Scholar 

  49. D. Kumar and G. Was: MRS Symposium Proc, Warrendale, PA, 2009, p. 1125.

  50. M.J. Donachie: Superalloys: A Technical Guide, ASM International, Materials Park, OH, 2002.

    Google Scholar 

  51. S.-L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X.-Y. Yan, F.-Y. Xie, R. Schmid-Fetzer, and W.A. Oates: CALPHAD, 2002, vol. 26, no. 2, p. 175-88.

    Article  CAS  Google Scholar 

  52. D. Kumar: Ph.D. Dissertation, 2009, University of Michigan, Ann Arbor, MI.

  53. D. Kumar, C.J. Torbet, and G.S. Was: Meas. Sci. Technol., 2009, vol. 20, pp. 095708-18.

    Article  Google Scholar 

  54. G.S. Was, J.W. Jones, and T. Pollock: Alloys for 1000°C Service in the Next Generation Nuclear Plant, NERI 05-019, DE-FC07-05ID14660, 2009.

  55. R. DeHoff: Thermodynamics in Materials Science, McGraw Hill, Columbus, OH, 2006, p. 349.

    Google Scholar 

  56. M. Hillert: J. Phase Equil., 1997, vol. 18, no. 3, pp. 249-63.

    Article  CAS  Google Scholar 

  57. W.J. Quadakkers and H. Schuster: Nucl. Tech., 1984, vol. 66, p. 383.

    CAS  Google Scholar 

  58. I. Mutoh, K. Homma, T. Tanabe, and M. Nakamura: J. Nucl. Mater., 1996, vol. 231, pp. 132-40.

    Article  CAS  Google Scholar 

  59. H.-H. Angermann and G.Z. Horz: Metallkde, 1991, vol. 82, no. 11, p. 846.

    CAS  Google Scholar 

  60. M. Kikuchi, S. Takeda, M. Kajihara, and R. Tanaka: Metall. Trans. A, 1986, vol. 19A, p. 645.

    Google Scholar 

  61. F.N. Mazandarany and G.Y. Lai: Nucl. Tech., 1979, vol. 43, pp. 349-65.

    CAS  Google Scholar 

  62. M.C. Pandey: Oxid. Met., 1997, vol. 48, nos. 1-2, p. 129-41.

    Article  CAS  Google Scholar 

  63. R.P. Smith: Trans. TMS-AIME, 1960, vol. 218, p. 62.

    CAS  Google Scholar 

  64. J. Cermak and H. Mehrer: Acta Metall. Mater., 1994, vol. 42, no. 4, pp. 1345-50.

    Article  CAS  Google Scholar 

  65. R. Smoluchowski: Phys. Rev., 1943, vol. 63, nos. 11-12, p. 438-40.

    Article  CAS  Google Scholar 

  66. D.S. Wilkinson: Mass Transport in Solids and Fluids, Oxford University Press, New York, NY, 2000, p. 107.

    Google Scholar 

  67. D.S. Wilkinson: Mass Transport in Solids and Fluids, Oxford University Press, New York, NY, 2000, p. 47.

    Google Scholar 

  68. W.E. Voice and R.G. Faulkner: Met. Sci., 1985, vol. 18, pp. 411-18.

    Google Scholar 

  69. D. Young: High Temperature Oxidation and Corrosion of Metals, Elsevier, London, UK, 2008, pp. 247-314.

    Book  Google Scholar 

  70. P. Kofstad: High Temperature Corrosion, Elsevier Applied Science, London, UK, 1988, p. 389.

    Google Scholar 

  71. D. Young: High Temperature Oxidation and Corrosion of Metals, Elsevier, London, UK, 2008, p. 81.

    Book  Google Scholar 

  72. C.S. Giggins and F.S. Pettit: J. Electrochem. Soc., 1971, vol. 118, no. 11, p. 1782.

    Article  CAS  Google Scholar 

  73. N. Birks, G.H. Meier, and F.S. Petit: High Temperature Oxidation of Metals, Cambridge University Press, New York, NY, 2006, p. 101.

    Google Scholar 

  74. C. Wagner: Zeitschrift Elektrochemie Angewandte Physikalische Chemie, 1959, vol. 63, p. 772.

    CAS  Google Scholar 

  75. N. Birks, G.H. Meier, and F.S. Pettit: Introduction to the High-Temperature Oxidation of Metals, Cambridge University Press, New York, NY, 2006.

    Google Scholar 

  76. I. Wolf and H.J. Grabke: Solid State Comm., 1985, vol. 54, no. 1, pp. 5-10.

    Article  CAS  Google Scholar 

  77. V.K. Tolpygo and D.R. Clarke: Mater. High Temp., 2000, vol. 17, no. 1, pp. 59-70.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of U.S. Department of Energy under contract #DE-FC07-05ID14660.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavendra R. Adharapurapu.

Additional information

Manuscript submitted November 7, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adharapurapu, R.R., Kumar, D., Zhu, J. et al. Chromia-Assisted Decarburization of W-Rich Ni-Based Alloys in Impure Helium at 1273 K (1000 °C). Metall Mater Trans A 42, 1229–1244 (2011). https://doi.org/10.1007/s11661-010-0503-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0503-0

Keywords

Navigation