Skip to main content
Log in

Understanding the Problem of Fatigue in Bulk Metallic Glasses

  • Symposium: Bulk Metallic Glasses VII
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Early studies suggested there was a severe problem with the fatigue resistance of some bulk metallic glasses (BMGs) and BMG matrix composites, while more recent studies begin to demonstrate a wide variety of fatigue behaviors may be possible for both fully amorphous BMGs and their composites. However, in order to truly understand and control the fatigue behavior of these materials, the role of such factors as thermomechanical processing, the corresponding glass structure, environment, and defects must be understood. Additionally, it is important to understand how these factors relate to the mechanisms of fatigue. This article reviews the current understanding in this regard, and identifies some of the challenges for the future development of fatigue-resistant BMG-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. All compositions are given in terms of atomic percent.

References

  1. C.J. Byrne and M. Eldrup: Science, 2008, vol. 321, pp. 502–03.

    Article  CAS  Google Scholar 

  2. M.F. Ashby and A.L. Greer: Scripta Mater., 2006, vol. 54, pp. 321–26.

    Article  CAS  Google Scholar 

  3. J.J. Lewandowski, W.H. Wang, and A.L. Greer: Phil. Mag. Lett., 2005, vol. 85, pp. 77–87.

    Article  CAS  Google Scholar 

  4. J. Schroers: JOM, 2005, vol. 57, pp. 35–39.

    Article  CAS  Google Scholar 

  5. C.J. Gilbert, J.M. Lippmann, and R.O. Ritchie: Scripta Mater., 1998, vol. 38, pp. 537–42.

    Article  CAS  Google Scholar 

  6. M.E. Launey, R. Busch, and J.J. Kruzic: Scripta Mater., 2006, vol. 54, pp. 483–87.

    CAS  Google Scholar 

  7. G.Y. Wang, P.K. Liaw, A. Peker, B. Yang, M.L. Benson, W. Yuan, W.H. Peter, L. Huang, M. Freels, R.A. Buchanan, C.T. Liu, and C.R. Brooks: Intermetallics, 2005, vol. 13, pp. 429–35.

    Article  CAS  Google Scholar 

  8. B.C. Menzel and R.H. Dauskardt: Scripta Mater., 2006, vol. 55, pp. 601–04.

    Article  CAS  Google Scholar 

  9. G.Y. Wang, P.K. Liaw, and M.L. Morrison: Intermetallics, 2009, vol. 17, pp. 579–90.

    Article  CAS  Google Scholar 

  10. K.M. Flores, W.L. Johnson, and R.H. Dauskardt: Scripta Mater., 2003, vol. 49, pp. 1181–87.

    Article  CAS  Google Scholar 

  11. M.E. Launey, D.C. Hofmann, W.L. Johnson, and R.O. Ritchie: Proc. Nat. Acad. Sci. Univ. S.A., 2009, vol. 106, pp. 4986–91.

    Article  CAS  Google Scholar 

  12. K. Boopathy, D.C. Hofmann, W.L. Johnson, and U. Ramamurty: J. Mater. Res., 2009, vol. 24, pp. 3611–19.

    Article  CAS  Google Scholar 

  13. M.E. Launey, R. Busch, and J.J. Kruzic: Acta Mater., 2008, vol. 56, pp. 500–10.

    Article  CAS  Google Scholar 

  14. M. Liu, R.S. Vallery, D.W. Gidley, M.E. Launey, and J.J. Kruzic: J. Appl. Phys., 2009, vol. 105, 093501.

  15. R.S. Vallery, M. Liu, D.W. Gidley, M.E. Launey, and J.J. Kruzic: Appl. Phys. Lett., 2007, vol. 91, 261908.

  16. A.B. El-Shabasy and J.J. Lewandowski: Scripta Mater., 2010, vol. 62, pp. 481–84.

    Article  CAS  Google Scholar 

  17. R. Raghavan, R. Ayer, H.W. Jin, C.N. Marzinsky, and U. Ramamurty: Scripta Mater., 2008, vol. 59, pp. 167–70.

    Article  CAS  Google Scholar 

  18. C.E. Packard, L.M. Witmer, and C.A. Schuh: Appl. Phys. Lett., 2008, vol. 92, 171911.

  19. S.L. Philo and J.J. Kruzic: Scripta Mater., 2010, vol. 62, pp. 473–76.

    Article  CAS  Google Scholar 

  20. V. Schroeder, C.J. Gilbert, and R.O. Ritchie: Scripta Mater., 1999, vol. 40, pp. 1057–61.

    Article  CAS  Google Scholar 

  21. V. Schroeder, C.J. Gilbert, and R.O. Ritchie: Mater. Sci. Eng. A, 2001, vol. 317, pp. 145–52.

    Article  Google Scholar 

  22. V. Schroeder and R.O. Ritchie: Acta Mater., 2006, vol. 54, pp. 1785–94.

    Article  CAS  Google Scholar 

  23. P.A. Hess, B.C. Menzel, and R.H. Dauskardt: Scripta Mater., 2006, vol. 54, pp. 355–61.

    Article  CAS  Google Scholar 

  24. B.C. Menzel and R.H. Dauskardt: Acta Mater., 2008, vol. 56, pp. 2955–65.

    Article  CAS  Google Scholar 

  25. B.C. Menzel and R.H. Dauskardt: Acta Mater., 2006, vol. 54, pp. 935–43.

    Article  CAS  Google Scholar 

  26. D. Suh and R.H. Dauskardt: Scripta Mater., 2000, vol. 42, pp. 233–40.

    Article  CAS  Google Scholar 

  27. D. Suh and R.H. Dauskardt: Mater. Sci. Eng. A, 2001, vols. A319–A321, pp. 480–83.

    Google Scholar 

  28. P. Murah and U. Ramamurty: Acta Mater., 2005, vol. 53, pp. 1467–78.

    Article  Google Scholar 

  29. F. Spaepen: Acta Metall., 1977, vol. 25, pp. 407–15.

    Article  CAS  Google Scholar 

  30. P.S. Steif, F. Spaepen, and J.W. Hutchinson: Acta Metall., 1982, vol. 30, pp. 447–55.

    Article  CAS  Google Scholar 

  31. A.S. Argon: Acta Metall., 1979, vol. 27, pp. 47–58.

    Article  CAS  Google Scholar 

  32. D. Suh and R.H. Dauskardt: J. Non-Cryst. Solids, 2003, vol. 317, pp. 181–86.

    Article  CAS  Google Scholar 

  33. R. Gerling, F.P. Schimansky, and R. Wagner: Acta Metall., 1988, vol. 36, pp. 575–83.

    Article  CAS  Google Scholar 

  34. M.E. Launey, J.J. Kruzic, C. Li, and R. Busch: Appl. Phys. Lett., 2007, vol. 91, 051913.

  35. Y. Yokoyama, P.K. Liaw, M. Nishijima, K. Hiraga, R.A. Buchanan, and A. Inoue: Mater. Trans., 2006, vol. 47, pp. 1286–93.

    Article  CAS  Google Scholar 

  36. K.M. Flores, E. Sherer, A. Bharathula, H. Chen, and Y.C. Jean: Acta Mater., 2007, vol. 55, pp. 3403–11.

    Article  CAS  Google Scholar 

  37. Y.Q. Cheng and E. Ma: Appl. Phys. Lett., 2008, vol. 93, p. 3.

    Google Scholar 

  38. Y.Q. Cheng, A.J. Cao, H.W. Sheng, and E. Ma: Acta Mater., 2008, vol. 56, pp. 5263–75.

    Article  CAS  Google Scholar 

  39. D.B. Miracle, T. Egami, K.M. Flores, and K.F. Kelton: MRS Bull., 2007, vol. 32, pp. 629–34.

    Article  CAS  Google Scholar 

  40. C.C. Aydiner and E. Ustundag: Mech. Mater., 2005, vol. 37, pp. 201–12.

    Article  Google Scholar 

  41. C.C. Aydiner, E. Ustundag, M.B. Prime, and A. Peker: J. Non-Cryst. Solids, 2003, vol. 316, pp. 82–95.

    Article  Google Scholar 

  42. Y. Zhang, W.H. Wang, and A.L. Greer: Nature Mater., 2006, vol. 5, pp. 857–60.

    Article  CAS  Google Scholar 

  43. F. Spaepen: Acta Metall., 1977, vol. 25, pp. 407–15.

    Article  CAS  Google Scholar 

  44. C.J. Gilbert, V. Schroeder, and R.O. Ritchie: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1739–53.

    Article  CAS  Google Scholar 

  45. S. Suresh: Fatigue of Materials, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 577–581.

    Google Scholar 

  46. R.P. Gangloff: in Environment-Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., National Association of Corrosin Engineers, Houston TX, 1990, pp. 55–109.

  47. A.J. McEvily and R.P. Wei: in Corrosion Fatigue: Chemistry, Mechanics and Microstructure, O. Devereux, A.J. McEvily, and R.W. Staehle, eds., National Association of Corrosion Engineers, Houston, TX, 1972, pp. 381–95.

  48. S.L. Philo, J. Heinrich, I. Gallino, R. Busch, and J.J. Kruzic, unpublished research, 2010.

  49. G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, Y. Yokoyama, M.L. Benson, B.A. Green, M.J. Kirkham, S.A. White, T.A. Saleh, R.L. McDaniels, R.V. Steward, R.A. Buchanan, C.T. Liu, and C.R. Brooks: Intermetallics, 2004, vol. 12, pp. 885–92.

    Article  CAS  Google Scholar 

  50. C.J. Gilbert, R.O. Ritchie, and W.L. Johnson: Appl. Phys. Lett., 1997, vol. 71, pp. 476–78.

    Article  CAS  Google Scholar 

  51. D.L. Cocke, G. Liang, M. Owens, D.E. Halverson, and D.G. Naugle: Mater. Sci. Eng., 1988, vol. 99, pp. 497–500.

    Article  CAS  Google Scholar 

  52. N. Eliaz and D. Eliezer: Adv. Perform. Mater., 1999, vol. 6, pp. 5–31.

    Article  CAS  Google Scholar 

  53. G.G. Libowitz and A.J. Maeland: J. Less-Common Met., 1984, vol. 101, pp. 131–43.

    Article  CAS  Google Scholar 

  54. L. Liu, C.L. Qiu, Q. Chen, K.C. Chan, and S.M. Zhang: J. Biomedical Mater. Res. Part A, 2008, vol. 86A, pp. 160–69.

    Article  CAS  Google Scholar 

  55. J.R. Scully, A. Gebert, and J.H. Payer: J. Mater. Res., 2007, vol. 22, pp. 302–13.

    Article  CAS  Google Scholar 

  56. B. Walz, P. Oelhafen, H.J. Guntherodt, and A. Baiker: Appl. Surf. Sci., 1989, vol. 37, pp. 337–52.

    Article  CAS  Google Scholar 

  57. H.M. Kimura, K. Asami, A. Inoue, and T. Masumoto: Corr. Sci., 1993, vol. 35, pp. 909–915.

    Article  CAS  Google Scholar 

  58. U. Köster and L. Jastrow: Mater. Sci. Eng. A, 2007, vol. 449A, pp. 57–62.

    Google Scholar 

  59. C.T. Liu, L. Heatherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, and A. Inoue: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1811–20.

    Article  CAS  Google Scholar 

  60. S.K. Sharma, T. Strunskus, H. Ladebusch, and F. Faupel: Mater. Sci. Eng. A, 2001, vol. 304, pp. 747–52.

    Article  Google Scholar 

  61. M.L. Morrison, R.A. Buchanan, P.K. Liaw, B.A. Green, G.Y. Wang, C.T. Liu, and J.A. Horton: Mater. Sci. Eng. A, 2007, vol. 467, pp. 198–206.

    Article  Google Scholar 

  62. M.L. Morrison, R.A. Buchanan, P.K. Liaw, B.A. Green, G.Y. Wang, C. Liu, and J.A. Horton: Mater. Sci. Eng. A, 2007, vol. 467, pp. 190–97.

    Article  Google Scholar 

  63. H.M. Chiu, G. Kumar, J. Blawzdziewicz, and J. Schroers: Scripta Mater., 2009, vol. 61, pp. 28–31.

    Article  CAS  Google Scholar 

  64. G. Kumar, H.X. Tang, and J. Schroers: Nature, 2009, vol. 457, pp. 868–72.

    Article  CAS  Google Scholar 

  65. R. Martinez, G. Kumar, and J. Schroers: Scripta Mater., 2008, vol. 59, pp. 187–90.

    Article  CAS  Google Scholar 

  66. J. Schroers, Q. Pham, A. Peker, N. Paton, and R.V. Curtis: Scripta Mater., 2007, vol. 57, pp. 341–44.

    Article  CAS  Google Scholar 

  67. M.D. Demetriou, C. Veazey, J. Schroers, J.C. Hanan, and W.L. Johnson: J. Alloys Compds., 2007, vol. 434, pp. 92–96.

    Article  Google Scholar 

  68. K.M. Flores, D. Suh, R.H. Dauskardt, P. Asoka-Kumar, P.A. Sterne, and R.H. Howell: J. Mater. Res., 2002, vol. 17, pp. 1153–61.

    Article  CAS  Google Scholar 

  69. S.O. Hruszkewycz, T. Fujita, M.W. Chen, and T.C. Hufnagel: Scripta Mater., 2008, vol. 58, pp. 303–06.

    CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Ralf Busch, Universität des Saarlandes, and Dr. Maximilien Launey, Lawrence Berkeley National Laboratory, for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Kruzic.

Additional information

Manuscript submitted March 16, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruzic, J.J. Understanding the Problem of Fatigue in Bulk Metallic Glasses. Metall Mater Trans A 42, 1516–1523 (2011). https://doi.org/10.1007/s11661-010-0413-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0413-1

Keywords

Navigation