Skip to main content
Log in

The Effect of Pitting on Fatigue Lives of Peak-Aged and Overaged 7075 Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fatigue lives at high peak stresses for peak-aged (T6) and overaged (T73) 7075 aluminum alloy were compared in the uncorroded and precorroded (pitted) states. Absolute fatigue lives of T73 samples were much higher than that of T6 in the virgin as well as precorroded condition, but the normalized life of T73 was less than that of T6, indicating an intrinsic crack initiation resistance in the former, borne out by fractography, which showed that fatigue cracks almost always initiated at pits for T73 but not for T6. The various crack initiation methodologies observed and the effect of pitting on fatigue lives in the two aging conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Barter, P.K. Sharp, and G. Clark: Eng. Fail. Anal., 1994, vol. 1, pp. 255–66.

    Article  CAS  Google Scholar 

  2. H. Weiland, J. Nardiello, S. Zaefferer, S. Cheong, J. Papazian, and R. Dierk: Eng. Fract. Mech., 2009, vol. 76, pp. 709–14.

    Article  Google Scholar 

  3. A. Merati and G. Eastaugh: Eng. Fail. Anal., 2007, vol. 14, pp. 673–85.

    Article  CAS  Google Scholar 

  4. Z. Szklarska-Smialowska: Corros. Sci., 1999, vol. 41, pp. 1743–67.

    Article  CAS  Google Scholar 

  5. R.P. Wei, C.-M. Liao, and M. Gao: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1153–60.

    Article  CAS  ADS  Google Scholar 

  6. G.O. Ilevbare, O. Schneider, R.G. Kelly, and J.R. Scully: J. Electrochem. Soc., 2004, vol. 151, pp. B453–B464.

    Article  CAS  Google Scholar 

  7. F. Andreatta, M.M. Lohrengel, H. Terryn, and J.H.W. de Wit: Electrochem. Acta, 2003, vol. 48, pp. 3239–47.

    Article  CAS  Google Scholar 

  8. D.G. Harlow and R.P. Wei: Eng. Fract. Mech., 1998, vol. 59, pp. 305–25.

    Article  Google Scholar 

  9. Q.Y. Wang, N. Kawagoishi, and Q. Chen: Int. J. Fatigue, 2006, vol. 28, pp. 1572–76.

    Article  MATH  CAS  Google Scholar 

  10. P.R. Underhill and D.L. Duquesnay: Int. J. Fatigue, 2009, vol. 31, pp. 538–43.

    Article  CAS  Google Scholar 

  11. M.N. Desmukh, R.K. Pandey, and A.K. Mukhopadhyay: Mater. Sci. Eng. A, 2006, vols. 435–436, pp. 318–26.

    Google Scholar 

  12. S.E. Stanzl-Tschegg, O. Plasser, E.K. Tschegg, and A.K. Vasudevan: Int. J. Fatigue, 1999, vol. 21, pp. S255–S262.

    Article  CAS  Google Scholar 

  13. P.S. De, R.S. Mishra, and C.B. Smith: Scripta Mater., 2009, vol. 60, pp. 500–03.

    Article  CAS  Google Scholar 

  14. P.S. Pao, C.R. Feng, and S.J. Gill: Corrosion, 2000, vol. 56, pp. 1022–31.

    Article  CAS  Google Scholar 

  15. D.W. Hoeppner: Proc. ASTM-NBS-NSF Symp., ASTM STP 675, J.T. Fong, ed., ASTM Philadelphia, PA, 1979, pp. 841–63.

  16. R.P. Wei: Scripta Mater., 2001, vol. 44, pp. 2647–52.

    Article  CAS  Google Scholar 

  17. Q.Y. Wang, R.M. Pidaparti, and M.J. Palakal: AIAA J., 2001, vol. 39, pp. 325–30.

    Article  CAS  ADS  Google Scholar 

  18. P. Shi and S. Mahadevan: Eng. Fract. Mech., 2001, vol. 68, pp. 1493–1507.

    Article  Google Scholar 

  19. S.I. Rokhlin, J.Y. Kim, H. Nagy, and B. Zoofan: Eng. Fract. Mech., 1999, vol. 62, pp. 425–44.

    Article  Google Scholar 

  20. Q.Y. Wang, N. Kawagoishi, and Q. Chen: Scripta Mater., 2003, vol. 49, pp. 711–16.

    Article  CAS  Google Scholar 

  21. R.M. Pidaparti and R.R. Patel: Mater. Lett., 2008, vol. 62, pp. 4497–99.

    Article  CAS  Google Scholar 

  22. T. Ghidini and C. Dalle Donne: Eng. Fract. Mech., 2009, vol. 76, pp. 134–48.

    Article  Google Scholar 

  23. K. Jones and D.W. Hoeppner: Corros. Sci., 2005, vol. 47, pp. 2185–98.

    Article  CAS  Google Scholar 

  24. K. Jones and D.W. Hoeppner: Int. J. Fatigue, 2009, vol. 31, pp. 686–92.

    Article  CAS  Google Scholar 

  25. S. Kim, J.T. Burns, and R.P. Gangloff: Eng. Fract. Mech., 2009, vol. 76, pp. 651–67.

    Article  Google Scholar 

  26. K.K. Sankaran, R. Perez, and K.V. Jata: Mater. Sci. Eng. A, 2001, vol. 297, pp. 223–29.

    Article  Google Scholar 

  27. J.J. Medved, M. Breton, and P.E. Irving: Int. J. Fatigue, 2004, vol. 26, pp. 71–80.

    Article  CAS  Google Scholar 

  28. J.E. Zamber: Master’s Thesis, Purdue University, West Lafayette, IN, 1997.

  29. E.J. Dolley, B. Lee, and R.P. Wei: Fatigue Fract. Eng. Mater. Struct., 2000, vol. 23, pp. 555–60.

    Article  CAS  Google Scholar 

  30. D.L. DuQuesnay, P.R. Underhill, and H.J. Britt: Int. J. Fatigue, 2003, vol. 25, pp. 371–77.

    Article  CAS  Google Scholar 

  31. K. van der Walde, J.R. Brockenbrough, B.A. Craig, and B.M. Hillberry: Int. J. Fatigue, 2005, vol. 27, pp. 1509–18.

    Article  Google Scholar 

  32. J.C.J. Newman, E.P. Phillips, and M.H. Swain: Int. J. Fatigue, 1999, vol. 21, pp. 109–19.

    Article  CAS  Google Scholar 

  33. S. Ishihara, S. Saka, Z.Y. Nan, T. Goshima, and S. Sunada: Fatigue Fract. Eng. Mater. Struct., 2006, vol. 29, pp. 472–80.

    Article  CAS  Google Scholar 

  34. W. Schutz: 18th Symp. ICAF, ICAF 95, EMAS, Melbourne, Australia, 1995, pp. 1–52.

  35. L. Ma and D.W. Hoeppner: FAA/NASA Int. Symp. on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, NASA CR 3274, NASA, Washington, DC, 1994.

  36. G.H. Bray, R.J. Bucci, E.L. Colvin, and M. Kulak: Effects of Environment on the Initiation of Crack Growth, ASTM STP 1298, ASTM, Philadelphia, PA, 1997, p. 89.

  37. C.K. Lin and S.T. Yang: Eng. Fract. Mech., 1998, vol. 59, pp. 779–95.

    Article  Google Scholar 

  38. F. Andreatta, H. Terryn, and J.H.W de Wit: Electrochem. Acta, 2004, vol. 49, pp. 2851–62.

    Article  CAS  Google Scholar 

  39. S. Suresh, A.K. Vasudevan, and P.E. Bretz: Metall. Trans. A, 1984, vol. 15A, pp. 369–79.

    CAS  ADS  Google Scholar 

  40. E.U. Lee, A.K. Vasudevan, and G. Glinka: Int. J. Fatigue, 2009, doi:10.1016/j.ijfatigue.2008.11.012

  41. S. Dey, M.K. Gunjan, and I. Chattoraj: Corros. Sci., 2008, vol. 50, pp. 2895–2901.

    Article  CAS  Google Scholar 

  42. N. Birbilis and R.G. Buchheit: J. Electrochem. Soc., 2005, vol. 152, pp. B140–B151.

    Article  CAS  Google Scholar 

  43. N.D. Alexopoulos and P. Papanikos: Mater. Sci. Eng. A, 2008, vol. 498, pp. 248–57.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. S. Tarafder and S. Sivaprasad, National Metallurgical Laboratory, for helpful discussions and advice. One of the authors (SD) is grateful to the Council of Scientific and Industrial Research (CSIR), India, for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Chattoraj.

Additional information

Manuscript submitted August 18, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, S., Das, S.K., Basumallick, A. et al. The Effect of Pitting on Fatigue Lives of Peak-Aged and Overaged 7075 Aluminum Alloys. Metall Mater Trans A 41, 3297–3307 (2010). https://doi.org/10.1007/s11661-010-0395-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0395-z

Keywords

Navigation