Skip to main content
Log in

Thermal Stability of α Phase of Titanium by Using X-Ray Diffraction

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

At room temperature and ambient pressure, crystalline titanium has a hexagonal-close-packed (hcp) lattice and at high temperature appears as a body-centered-cubic (bcc) structure. In fact, the phase transitions of titanium have been investigated under various pressures and temperatures. However, the phase transitions of titanium have been mostly reported at high pressure, while less attention has been paid to various ranges of high temperature. Therefore, in this study, we have considered the thermal stability of α phase of titanium by using X-ray diffraction (XRD) at high temperature. The observed experimental results of the diffraction show that the stability range of α phase varies between room temperature to around 923 K (650 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

References

  1. K.M. Ho, C.L. Fu, B.N. Harmon, W. Weber, and D.R. Hamann: Phys. Rev. Lett., 1982, vol. 49, p. 673.

    Article  CAS  ADS  Google Scholar 

  2. International Table for Crystallography: Volume A: Space-Group Symmetry, 5th ed., T. Hahn, ed., Springer, Dordrecht, The Netherlands, 2005, pp. 61–70.

  3. Y.K. Vohra and P.T. Spencer: Phys. Rev. Lett., 2001, vol. 86, p. 3068.

    Article  CAS  ADS  PubMed  Google Scholar 

  4. W.B. Pearson: A Handbook of Lattice Spacing and Structures of Metals and Alloys, Pergamon Press, Oxford, United Kingdom, 1967, vol. 2, pp. 1264–71.

  5. A. Hull: Phys. Rev., 1921, vol. 18, p. 88.

    Article  CAS  Google Scholar 

  6. W. Burgers and F. Jacobs: Z. Krist., 1936, vol. 94, p. 299.

    CAS  Google Scholar 

  7. O.N. Senkov, B.C. Chakoumakos, J.J. Jonas, and F.H. Froes: Mater. Res. Bull., 2001, vol. 36, p. 1431.

    Article  CAS  Google Scholar 

  8. J.C. Jamieson: Science, 1963, vol. 140, p. 72.

    Article  CAS  ADS  PubMed  Google Scholar 

  9. S.K. Sika, Y.K. Vohra, and R. Chidaraman: Prog. Mater. Sci., 1982, vol. 27, p. 245.

    Article  Google Scholar 

  10. Y. Akahama, H. Kawamura, and T.L. Bihan: Phys. Rev. Lett., 2001, vol. 87, p. 275503.

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Y.K. Vohra and T.S. Philemon: Phys. Rev. Lett., 2001, vol. 86, pp. 3068–71.

    Article  CAS  ADS  PubMed  Google Scholar 

  12. A.R. Kutsar: Fiz. Metal. Metalloved., 1975, vol. 40, p. 786.

    Google Scholar 

  13. D.A. Young: Phase Diagrams of the Elements, University of California Press, Berkeley, CA, 1991, pp. 170–72.

    Google Scholar 

  14. J. Donohue: The Structures of the Elements, John Wiley and Sons, New York, NY, 1974.

    Google Scholar 

  15. D. Errandonea, Y. Meng, M. Somayazulu, and D. Häusermann: Physica B, 2005, vol. 355, p. 116.

    Article  CAS  ADS  Google Scholar 

  16. E.Y. Tonkov: High Pressure Phase Transformations, Gordon and Breach Science Publishers, Philadelphia, PA, 1992, p. 178.

    Google Scholar 

  17. H.K.D.H. Bhadeshia: Metallurgy of Titanium and Its Alloys, Lecture notes for a Cambridge University, Materials Science and Metallurgy Course, Cambridge, United Kingdom, 2008.

  18. R. Sailer and G. McCarthy: North Dakota State University, Fargo, ND, ICDD Grant-in-Aid (1993), JCPDS code 44-1294.

  19. Joint Committee on Powder Diffraction Standards (JCPDS codes 44-1294 and 05-0682) Powder Diffraction File, 2000.

  20. S.P. Rudin, M.D. Jones, and R.C. Albers: Phys. Rev. B, 2004, vol. 69, p. 094117.

    Article  ADS  Google Scholar 

  21. P. Toledano and V. Dmitriev: Reconstructive Phase Transitions in Crystals and Quasicrystals, World Scientific, Publishing Co., Singapore, 1996, pp. 193–227.

    Google Scholar 

  22. M. Jafari, Me. Vaezzadeh, Ma. Vaezzadeh, R. Afzalzadeh, and L. Nazarzadeh: Reconstructive Phase Transition in Titanium, Joint 21st AIRAPT and 45th EHPRG Int. Conf., Catania, Italy, 2007, p. 197.

  23. K. Sugiyama and Y. Takeuchi: Z. Kristallogr., 1991, vol. 194, p. 305, JCPDS code 76-0318.

  24. B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, Massachusetts, 1978, p. 501.

  25. F. Jona and P.M. Marcus: Phys. Status Solidi (b), 2005, vol. 242 (15), p. 3077.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

We express our sincere gratitude to Professor Kamran Ahmadi, Director of the XRD Laboratory of Materials and Energy Research Center in Karaj (Iran), for kindly providing us with several opportunities to benefit from the XRD facilities at the Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Jafari.

Additional information

Manuscript submitted May 5, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafari, M., Vaezzadeh, M. & Noroozizadeh, S. Thermal Stability of α Phase of Titanium by Using X-Ray Diffraction. Metall Mater Trans A 41, 3287–3290 (2010). https://doi.org/10.1007/s11661-010-0393-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0393-1

Keywords

Navigation