Skip to main content
Log in

A Coupled Electrical–Thermal–Mechanical Modeling of Gleeble Tensile Tests for Ultra-High-Strength (UHS) Steel at a High Temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A coupled electrical–thermal–mechanical model is proposed aimed at the numerical modeling of Gleeble tension tests at a high temperature. A multidomain, multifield coupling resolution strategy is used for the solution of electrical, energy, and momentum conservation equations by means of the finite element method. Its application to ultra-high-strength steel is considered. After calibration with instrumented experiments, numerical results reveal that significant thermal gradients prevail in Gleeble tensile steel specimen in both axial and radial directions. Such gradients lead to the heterogeneous deformation of the specimen, which is a major difficulty for simple identification techniques of constitutive parameters, based on direct estimations of strain, strain rate, and stress. The proposed direct finite element coupled model can be viewed as an important achievement for subsequent inverse identification methods, which should be used to identify constitutive parameters for steel at a high temperature in the solid state and in the mushy state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

Material constant, s−1

C :

Material constant, N−1/m m2/m or Pa−1/m

E :

Elastic Young’s modulus, N m−2 or Pa

F :

Traction force, N

H evp :

Temperature dependant constant, N m−2 or Pa

I :

The identity tensor

J imp :

Imposed electrical current density, A m−2

J :

Electrical current density vector, A m−2

K vp :

The so-called viscoplastic consistency in THVP law, N m−2 or Pa

K evp :

The so-called viscoplastic consistency in THEVP law, N m−2, or Pa

L :

Specific latent heat, J kg−1

P elecv :

Volume heat source caused by Joule effect (resistance heating), W m−3

\( P_{\text{interface}}^{\text{elec}} \) :

Interface heat source caused by Joule effect (resistance heating), W m−2

Q :

Apparent activation energy, J mol−1

R :

Gas constant

T :

Temperature, K

T contact :

Local temperature at the contact surface of the neighbor domain, K

T env :

Environment temperature, K

T :

Stress vector, N m−2 or Pa

V imp :

Imposed grip velocity, m s−1

a :

Parameter in microsegregation model

b :

Thermal effusivity, J m−2 K−1 s−1/2

b contact :

Thermal effusivity at the contact surface of the neighbor domain, J m−2 K−1 s−1/2

c :

Carbon content, wt pct

c p :

Specific heat, J kg−1 K−1

e :

Estimated error in PID method, K

e z :

Unit vector along axial direction

f l :

Liquid mass fraction

g :

Gravity vector, m s−2

h :

Specific enthalpy, J kg−1

h c :

Heat-transfer coefficient at interface between specimen and grips, W m−2 K−1

h elec :

Effective electrical transfer coefficient, A m−2 V−1 or Ω m−2

h th_eff :

Effective heat transfer coefficient, W m−2 K−1

kp, ki, kd:

Proportional, integral and derivative constants in PID method, K−1 or °C−1

l n :

The control length associated with boundary node n

m :

Strain-rate sensitivity coefficient

n :

Outward unit normal vector

p :

Pressure, N m−2 or Pa

q imp :

Imposed heat flux density, W m−2

r e :

Radial coordinate of the center of element e, m

r n :

Radial coordinate of node n, m

s :

Deviatoric stress tensor, N m−2 or Pa

t :

Time, s

v :

Velocity vector, m s−1

v g :

Grip traction velocity vector, m s−1

Δl :

Elongation of specimen, m

Δr e :

Element dimension along radial direction, m

α :

Material constant, N−1 m2 or Pa−1

β :

Parameter in microsegregation model

\( \dot{\varvec{\upvarepsilon}}\) :

Total strain rate tensor, s−1

\( \dot{\varvec{\upvarepsilon}}^{\text{el}} \) :

Elastic strain rate tensor, s−1

\( \dot{\varvec{\upvarepsilon}}^{\text{th}} \) :

Thermal strain rate tensor, s−1

\( \dot{\varvec{\upvarepsilon}}^{\text{vp}} \) :

Irreversible (viscoplastic) strain rate tensor, s−1

\( \dot{\bar{\varepsilon }} \) :

von Mises equivalent strain rate, s−1

λ :

Heat conductivity, W m−1 K−1

ρ :

Density, kg m−3

ϕ :

Electrical potential, V

ϕ imp :

Imposed electrical potential, V

ϕ contact :

Local electrical potential at the contact surface of the neighbor domain, V

σ elec :

Electrical conductivity, A V−1 m−1 or Ω−1 m−1

σ :

Cauchy stress tensor, N m−2 or Pa

\( \bar{\sigma } \) :

von Mises equivalent stress, N m−2 or Pa

σ y :

Initial yield stress, N m−2 or Pa

σ zz :

Axial stress component, N m−2 or Pa

ν :

Poisson’s ratio

χ p :

Penalty coefficient

References

  1. D.G. Eskin and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1511–19.

    Article  CAS  ADS  Google Scholar 

  2. D.J. Lahaie and M. Bouchard: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 697–705.

    Article  CAS  ADS  Google Scholar 

  3. S. Nagata, T. Matsumiya, K. Ozawa, and T. Ohashi: Tetsu to Hagané, 1990, vol. 76, pp. 214–21.

    CAS  Google Scholar 

  4. Y.M. Won, T.J. Yeo, D.J. Seol, and K.H. Oh: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 779–94.

    Article  CAS  ADS  Google Scholar 

  5. M. Bellet, O. Cerri, M. Bobadilla, and Y. Chastel: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2705–17.

    Article  CAS  ADS  Google Scholar 

  6. M. Rappaz, J.M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449–55.

    Article  CAS  ADS  Google Scholar 

  7. K. Kim, K.H. Oh, and D.N. Lee: Scripta Mater., 1996, vol. 34, pp. 301–07.

    Article  CAS  Google Scholar 

  8. D.J. Seol, Y.M. Won, T.J. Yeo, K.H. Oh, J.K. Park, and C.H. Yim: ISIJ Int., 1999, vol. 39, pp. 91–98.

    Article  CAS  Google Scholar 

  9. M. Hojny and M. Glowacki: Steel Res. Int., 2008, vol. 79, pp. 868–74.

    CAS  Google Scholar 

  10. S.G.R. Brown, J.D. James, and J.A. Spittle: Model. Simul. Mater. Sci. Eng., 1997, vol. 5, pp. 539–48.

    Article  ADS  Google Scholar 

  11. S.D. Norris and I. Wilson: Model. Simul. Mater. Sci. Eng., 1999, vol. 7, pp. 297–309.

    Article  ADS  Google Scholar 

  12. K. Solek, Z. Mitura, and R. Kuziak: Proc. 3rd MIT Conf. Computational Fluid and Solid Mechanics, K.J. Bathe, ed., MIT, Boston, MA, 2005, pp. 1001–03.

  13. M. Rappaz, M. Bellet, and M. Deville: Numerical Modeling in Materials Science and Engineering, Springer-Verlag, New York, NY, 2003.

    Book  MATH  Google Scholar 

  14. M. Bellet and V.D. Fachinotti: Comput. Meth. Appl. Mech. Eng., 2004, vol. 193, pp. 4355–81.

    Article  MATH  Google Scholar 

  15. B.G. Thomas and M. Bellet: ASM Handbook vol. 15, Casting Division 4: Modelling and Analysis of Casting Processes, AMS, Materials Park, OH, 2008, pp. 449–61.

  16. J. Lemaître and J.-L. Chaboche: Mechanics of Solid Materials, Cambridge University Press, Cambridge, UK, 1990.

    MATH  Google Scholar 

  17. O. Jaouen: Ph.D. Dissertation, Mines-ParisTech, Paris, France, 1998.

  18. M. Bellet, O. Jaouen, and I. Poitrault: Int. J. Numer. Meth. Heat. Fluid Flow, 2005, vol. 15, pp. 120–42.

    Article  Google Scholar 

  19. M. Bellet, F. Decultieux, M. Menai, F. Bay, C. Levaillant, J.L. Chenot, P. Schmidt, and I.L. Svensson: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 81–99.

    Article  CAS  ADS  Google Scholar 

  20. M. Bellet and A. Heinrich: ISIJ Int., 2004, vol. 44, pp. 1686–95.

    Article  CAS  Google Scholar 

  21. G.A. Perdikaris: Computer Controlled Systems: Theory and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.

    Google Scholar 

  22. H.N. Han, Y.G. Lee, K.H. Oh, and D.N. Lee: Mater. Sci. Eng. A, 1996, vol. 206, pp. 81–89.

    Article  Google Scholar 

  23. Y.M. Won, K.H. Kim, T.J. Yeo, and K.H. Oh: ISIJ Int., 1998, vol. 38, pp. 1093–99.

    Article  CAS  Google Scholar 

  24. H. Mizukami, K. Murakami, and Y. Miyashita: Tetsu to Hagané, 1977, vol. 63, p. 562.

    Google Scholar 

  25. P.F. Kozlowski, B.G. Thomas, J.A. Azzi, and H. Wang: Metall. Trans. A, 1992, vol. 23A, pp. 903–18.

    CAS  ADS  Google Scholar 

Download references

Acknowledgments

This study has been financially supported by the company ArcelorMittal, which supported a two-year period passed by Changli Zhang in CEMEF laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changli Zhang.

Additional information

Manuscript submitted January 30, 2010.

Appendix: Material Properties of The Uhs Steel

Appendix: Material Properties of The Uhs Steel

To calculate the solidification path of the considered UHS steel, the microsegregation model presented by Won et al.[23] is used here, which takes into account the steel composition and cooling rate. The model is listed briefly as follows:

$$ f_{\text{s}} = \left( {{\frac{1}{1 - 2\beta k}}} \right)\left[ {1 - \left( {{\frac{{T_{\text{f}} - T}}{{T_{\text{f}} - T_{\text{L}} }}}} \right)^{{\left( {1 - 2\beta k} \right)/(k - 1)}} } \right] $$
$$ \beta = a\left[ {1 - \exp \left( {{\frac{ - 1}{a}}} \right)} \right] - \frac{1}{2}\exp \left[ {{\frac{ - 1}{2a}}} \right] $$
$$ a = 33.7\dot{T}^{ - 0.244} $$

where k is the equilibrium partition coefficient of carbon (taken as 0.265) and T f is the melting temperature of pure Fe (taken as 1808 K (1535 °C)). The liquidus temperature can be determined by the following:

$$ T_{\text{L}} = 1808 - 78\left( {{\text{pct}}\,{\text{C}}} \right) - 7.6\left( {{\text{pct}}\,{\text{Si}}} \right) - 4.9\left( {{\text{pct}}\,{\text{Mn}}} \right) - 34.4\left( {{\text{pct}}\,{\text{P}}} \right) -38\left( {{\text{pct}}\,{\text{S}}} \right)$$

where temperature is K. The cooling rate \( \dot{T} \) is taken as 0.17 K/s. The calculated relation between temperature and solid fraction is shown in Figure 16. The latent heat L is 272 kJ/kg. Thermophysical and electrical properties are given in Table AI.

Fig. 16
figure 16

The calculated relation between solid fraction and temperature for the steel

Table AI Thermal and Electrical Properties of the Considered UHS Steel

In regard to the mechanical behavior, the UHS steel is supposed to behave as an elastic-viscoplastic material, obeying the classical J 2 theory with isotropic linear hardening. The Young’s modulus is taken from Mizukami et al.[24] and is as follows:

$$ E\left[ {GPa} \right] = 968 - 2.33\left( {T - 273} \right) + 1.90 \times 10^{ - 3} \left( {T - 273} \right)^{2} - 5.18 \times 10^{ - 7} \left( {T - 273} \right)^{3} $$

Poisson’s ratio is arbitrarily taken as 0.3. Two different constitutive viscoplastic models have been considered in the present study.

The additive model from Kozlowski et al. (model III)[25] corresponds to Eq. [17] and is as follows:

$$ \bar{\sigma } = \sigma_{\rm y} + H_{\text{evp}} \bar{\varepsilon }^{n} + K_{\text{evp}} \dot{\bar{\varepsilon }}^{m} $$

The material exhibits a plastic yield stress under which its behavior is purely elastic. This plastic yield stress is the sum of the initial yield stress σ y and the strain-hardening contribution \( H_{\text{evp}} \bar{\varepsilon }^{n} . \) The following constitutive parameters used here are taken from Reference 25, and they are supposed to cover a wide range of austenitic plain carbon steels:

$$ \sigma_{\text{y}} = 0 $$
$$ m = {1 \mathord{\left/ {\vphantom {1 {\left( {8.132 - 1.540 \times 10^{ - 3} T} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {8.132 - 1.540 \times 10^{ - 3} T} \right)}} $$
$$ n = - 0.6289 + 1.114 \times 10^{ - 3} T $$
$$ H_{\text{evp}} = 130.5 - 5.128 \times 10^{ - 3} T $$
$$ K_{\text{evp}} = \left( {\frac{1}{C}\exp \left( {\frac{Q}{RT}} \right)} \right)^{m} $$

where C = 46550 + 71400c + 12000c 2, Q = 371.2 kJ/mol. The carbon content c is in wt pct, and the stress H evp and K evp is in MPa.

The model proposed by Han et al.[22] corresponds to Eq. [30] and is as follows:

$$ \bar{\sigma } = {\frac{{\bar{\varepsilon }^{n} }}{\alpha }}\text{arsinh}\left[ {\left( {\frac{1}{A}\exp \left( {\frac{Q}{RT}} \right)} \right)^{m} \dot{\bar{\varepsilon }}^{m} } \right] $$

The corresponding material parameters used here are taken from Seol et al.,[8] who characterized a steel grade with a composition approaching the composition of the grade considered here—0.14 wt pct C, 0.40 wt pct Si, and 1.28 wt pct Mn. Their parameters are listed in Table AII.

Table AII Parameters Value of Eq. [30], Taken from Seol et al.[8]

To illustrate the differences between these two constitutive models, stress–strain curves have been plotted for a constant strain rate 0.001 s−1 and three different temperatures (Figure 17). Significant differences are observed between the calculated curves.

Fig. 17
figure 17

Plotted stress–strain curves of Eq. [17] with parameters taken from Ref. 25 and of Eq. [30] with parameters taken from Ref. 8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Bellet, M., Bobadilla, M. et al. A Coupled Electrical–Thermal–Mechanical Modeling of Gleeble Tensile Tests for Ultra-High-Strength (UHS) Steel at a High Temperature. Metall Mater Trans A 41, 2304–2317 (2010). https://doi.org/10.1007/s11661-010-0310-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0310-7

Keywords

Navigation