Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of an Ultrahigh-Strength 40SiMnNiCr Steel during the One-Step Quenching and Partitioning Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The quenching and partitioning (Q&P) process is a novel heat treatment for the enhancement of the strength level of steels without a significant deterioration of ductility. In this work, a study of 40SiMnNiCr steel subjected to the one-step Q&P process is presented. The study results suggest that the strength level of the steel subject to one-step Q&P increases at first and subsequently decreases with the partitioning time because of the synergistic effect of the increase in the retained austenite fraction, the decrease in carbon supersaturation in martensite, the change in the dislocation density in martensite, and the formation of transition carbide. The presence of the transition carbide markedly increases the strength level of the one-step quenched and partitioned steel, with the ultimate tensile strength (UTS) over 2400 MPa and the ductility more than 10 pct during partitioning at 453 K (180 °C) for 180 seconds. Isothermal martensite transformation possibly occurred in this medium-carbon ferrous alloy during the one-step Q&P processing. Meanwhile, in the early stages of the low-temperature partitioning process, carbon partitioning from martensite to austenite plays a dominant role in the carbon redistribution competitions. In addition, the relationship between the microstructure and mechanical properties of the one-step quenched and partitioned steel is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, and P. Brown: Mater. Sci. Technol., 2002, vol. 18, pp. 279–84.

    Article  CAS  Google Scholar 

  2. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia: ISIJ Int., 2003, vol. 43, pp. 1238–43.

    Article  CAS  Google Scholar 

  3. F.G. Caballero and H.K.D.H. Bhadeshia: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 251–57.

    Article  CAS  Google Scholar 

  4. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia: Mater. Sci. Forum, 2005, vols. 500–501, pp. 495–501.

    Article  Google Scholar 

  5. W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, vol. 183, pp. 349–59.

    CAS  Google Scholar 

  6. G. Krauss: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 205–21.

    Article  CAS  ADS  Google Scholar 

  7. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.

    Article  Google Scholar 

  8. D.K. Matlock, V.E. Bräutigam, and J.G. Speer: Mater. Sci. Forum, 2003, vols. 426–432, pp. 1089–94.

    Article  Google Scholar 

  9. T.Y. Hsu: Mater. Sci. Forum, 2007, vols. 561–565, pp. 2283–86.

    Article  Google Scholar 

  10. N. Zhong, X.D. Wang, L. Wang, and Y.H. Rong: Mater. Sci. Eng., A, 2009, vol. 506, pp. 111–16.

    Article  Google Scholar 

  11. X.D. Wang, N. Zhong, Y.H. Rong, T.Y. Hsu, and L. Wang: J. Mater. Res., 2009, vol. 24, pp. 261–67.

    Google Scholar 

  12. J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 219–37.

    Article  CAS  Google Scholar 

  13. D. Aišman, H. Jirková, L. Skálová, and B. Mašek: Annals of DAAAM for 2008 and Proc. 19th Int. DAAAM Symp., DAAAM International, Vienna, Austria, 2008, pp. 7–8.

  14. F.L.H. Gerdemann, J.G. Speer, and D.K. Matlock: MS&T 2004 Conf. Proc., New Orleans, LA, 2004, AIST, Warrendale, PA, 2004, pp. 439–43.

  15. A. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, D.V. Edmonds, and K. He: Int. Conf. on Solid-Solid Phase Transformations in Inorganic Materials 2005 (PTM 2005), Phoenix, AZ, 2005, TMS, Warrendale, PA, 2005, pp. 99–108.

  16. S.S. Nayaka, R. Anumolu, R.D.K. Misra, K.H. Kim, and D.L. Lee: Mater. Sci. Eng., A, 2008, vol. 498, pp. 442–56.

    Article  Google Scholar 

  17. M.J. Santofimia, L. Zhao, R. Petrov, and J. Sietsma: Mater. Charact., 2008, vol. 59, pp. 1758–64.

    Article  CAS  Google Scholar 

  18. M.J. Santofimia, L. Zhao, and J. Sietsma: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 46–57.

    Article  CAS  ADS  Google Scholar 

  19. D.H. Kim, J.G. Speer, H.S. Kim, and B.C. De Cooman: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2048–60.

    Article  CAS  ADS  Google Scholar 

  20. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E. De Moor: Acta Mater., 2008, vol. 56, pp. 16–22.

    Article  CAS  Google Scholar 

  21. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng., A, 2006, vols. 438–440, pp. 25–34.

    Google Scholar 

  22. H.K.D.H. Bhadeshia and R. Honeycombe: Steels: Microstructure and Properties, 3rd ed., Butterworth-Heinemann, Oxford, United Kingdom, 2006, pp. 185–87.

    Google Scholar 

  23. A.K. Sinha: Physical Metallurgy Handbook, McGraw-Hill Professional, New York, NY, 2003, pp. 9–12.

    Google Scholar 

  24. C. Leslie William: The Physical Metallurgy of Steels, Hemisphere Corp., New York, NY, 1981, pp. 226–32.

    Google Scholar 

  25. C. Zhu: Tempering of Engineering Steels (Literature Review), Oxford Materials, Oxford University, Oxford, United Kingdom, 2005, pp. 10–15.

  26. G. Meyrick: Physical Metallurgy of Steel, Class Notes and Lecture Material, The Ohio State University, Columbus, OH, 1998, pp. 66–68.

  27. A.G. Allten and P. Payson: Trans. ASM, 1953, vol. 45, pp. 498–532.

    Google Scholar 

  28. W.S. Owen: Trans. ASM, 1954, vol. 46, pp. 812–29.

    Google Scholar 

  29. J. Gordine and I. Codd: J. Iron Steel Inst., 1969, vol. 207, pp. 461–67.

    CAS  Google Scholar 

  30. K. He, D.V. Edmonds, J.G. Speer, D.K. Matlock, and F.C. Rizzo: EMC 2008 14th European Microscopy Congress, Springer Berlin Heidelberg, Aachen, Germany, 2008, pp. 341–42.

    Google Scholar 

  31. G. Krauss: Steels: Heat Treatment and Processing Principles, 2nd ed., ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 53–54.

    Google Scholar 

  32. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  33. W. Li, W. Xu, X. Wang, and Y. Rong: J. Alloys Compd., 2009, vol. 474, pp. 546–50.

    Article  CAS  Google Scholar 

  34. I.A. Yakubtsov, P. Poruks, and J.D. Boyd: Mater. Sci. Eng., A, 2008, vol. 480, pp. 109–16.

    Article  Google Scholar 

  35. H.Y. Li and X.J. Jin: Chin. J. Mech. Eng., 2009, vol. 22, pp. 645–50.

    Article  CAS  Google Scholar 

  36. Q. Li: Mater. Sci. Eng., A, 2003, vol. 361, pp. 385–91.

    Article  Google Scholar 

  37. G.R. Speich and W.C. Leslie: Metall. Mater. Trans. B, 1972, vol. 3B, pp. 1043–54.

    ADS  Google Scholar 

  38. D.V. Edmonds, K. He, M.K. Miller, F.C. Rizzo, A. Clarke, D.K. Matlock, and J.G. Speer: Mater. Sci. Forum, 2007, vols. 539–543, pp. 4819–25.

    Article  Google Scholar 

  39. S. Matas and R.F. Hehemann: Nature, 1960, vol. 187, pp. 685–86.

    Article  CAS  ADS  Google Scholar 

  40. K.H. Jack: J. Iron Steel Inst., 1951, vol. 169, pp. 26–36.

    CAS  Google Scholar 

  41. D.V. Wilson and B. Russell: Acta Metall., 1960, vol. 8, pp. 468–79.

    Article  CAS  Google Scholar 

  42. E. De Moor, C. Föjer, A.J. Clarke, J. Penning, and J.G. Speer: Proceedings of the Conference on New Developments on Metallurgy and Applications of High-Strength Steels, T. Perez, ed., TMS, Warrendale, PA, 2009, pp. 721–24.

  43. T. Waterschoot, K. Verbeken, and B.C. De Cooman: ISIJ Int., 2006, vol. 46, pp. 138–46.

    Article  CAS  Google Scholar 

  44. L. Cheng, C.M. Brakman, B.M. Korevaar, and E.J. Mittemeijer: Metall. Trans. A, 1988, vol. 19A, pp. 2415–26.

    CAS  ADS  Google Scholar 

  45. B.G. Lifshitz: Physical Properties of Metals and Alloys, Mashgiz, Moscow, 1956, pp. 317–18.

    Google Scholar 

  46. P.G. Winchell and M. Cohen: Trans. ASM, 1962, vol. 55, pp. 347–61.

    CAS  Google Scholar 

  47. R.C. Ruhl and M. Cohen: Trans. AIME, 1969, vol. 245, pp. 241–51.

    CAS  Google Scholar 

  48. N. Ridley, H. Stuart, and L. Zwell: Trans. AIME, 1969, vol. 245, pp. 1834–36.

    CAS  Google Scholar 

  49. D.J. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74.

    CAS  Google Scholar 

  50. S. Nagakura: J. Phys. Soc. Jpn., 1959, vol. 14, pp. 186–95.

    Article  CAS  ADS  Google Scholar 

  51. H. Okamoto and M. Oka: Metall. Trans. A, 1986, vol. 17A, pp. 1113–20.

    CAS  ADS  Google Scholar 

  52. M. Oka and H. Okamoto: Metall. Trans. A, 1988, vol. 19A, pp. 447–52.

    CAS  ADS  Google Scholar 

  53. S.M.C. van Bohemen, M.J. Santofimia, and J. Sietsma: Scripta Mater., 2008, vol. 58, pp. 488–91.

    Article  Google Scholar 

  54. S.J. Kim, H.S. Kim, and B.C. De Cooman: AIST Steel Properties and Applications Conference Proceedings, MS&T’07, B.D. Nelson, ed., AIST, Detroit, MI, 2007, pp. 73–83.

  55. D.H. Kim, J.G. Speer, H.S. Kim, and B.C. De Cooman: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2048–60.

    Article  CAS  ADS  Google Scholar 

  56. B.L. Averbach, M. Cohen, and S.G. Fletcher: Trans. ASM, 1948, vol. 40, pp. 728–57.

    Google Scholar 

  57. G.V. Kurdjumov and O.P. Maksimova: Dokl. Akad. Nauk. SSSR, 1948, vol. 61, pp. 83–93.

    Google Scholar 

  58. E.S. Machlin and M. Cohen: Trans. AIME, 1952, vol. 194, pp. 489–500.

    Google Scholar 

  59. J.C. Fisher: Acta Metall., 1953, vol. 1, pp. 32–35.

    Article  CAS  Google Scholar 

  60. S.R. Pati and M. Cohen: Acta Metall., 1969, vol. 17, pp. 189–99.

    Article  CAS  Google Scholar 

  61. N.N. Thadhani and M. Meyers: Prog. Mater. Sci., 1986, vol. 30, pp. 1–37.

    Article  CAS  Google Scholar 

  62. A. Borgenstam and M. Hillert: Acta Mater., 2000, vol. 48, pp. 2777–85.

    Article  CAS  Google Scholar 

  63. A. Borgenstam and M. Hillert: Scripta Mater., 2001, vol. 45, pp. 917–22.

    Article  CAS  Google Scholar 

  64. T.Y. Hsu, C. Yexin, and C. Weiye: Metall. Trans. A, 1987, vol. 18A, pp. 1531–32.

    CAS  ADS  Google Scholar 

  65. T.Y. Hsu, C. Yexin, and C. Weiye: Metall. Trans. A, 1987, vol. 18A, pp. 1389–94.

    CAS  ADS  Google Scholar 

  66. D.E. Kaputkin, L.M. Kaputkina, and S.D. Prokoshkin: J. Phys. IV, 2003, vol. 112, pp. 275–78.

    Article  CAS  Google Scholar 

  67. N. Zhong, X.D. Wang, Y.H. Rong, and L. Wang: J. Mater. Sci. Technol., 2006, vol. 22, pp. 751–54.

    MATH  CAS  Google Scholar 

  68. M.J. Santofimia, L. Zhao, and J. Sietsma: Scripta Mater., 2008, vol. 59, pp. 159–62.

    Article  CAS  Google Scholar 

  69. M.J. Santofimia, J.G. Speer, A.J. Clarke, L. Zhao, and J. Sietsma: Acta Mater., 2009, vol. 57, pp. 4548–57.

    Article  CAS  Google Scholar 

  70. J.Z. Zhao, A.K. De, and B.C. De Cooman: Mater. Lett., 2000, vol. 44, pp. 374–78.

    Article  CAS  Google Scholar 

  71. J.L. Snoek: Physica, 1941, vol. 8, pp. 711–33.

    Article  CAS  ADS  Google Scholar 

  72. A.H. Cottrell and B.A. Bilby: Proc. Phys. Soc., 1949, vol. 62A, pp. 49–62.

    CAS  ADS  Google Scholar 

  73. W.A. Johnson and R.F. Mehl: Trans. AIME, 1939, vol. 135, pp. 416–42.

    Google Scholar 

  74. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.

    Article  CAS  ADS  Google Scholar 

  75. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212–24.

    Article  CAS  ADS  Google Scholar 

  76. M. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177–84.

    Article  CAS  ADS  Google Scholar 

  77. K.F. Kelton, A.L. Greer, and C.V. Thompson: J. Chem. Phys., 1983, vol. 79, pp. 6261–62.

    Article  CAS  ADS  Google Scholar 

  78. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, United Kingdom, 1997, pp. 206–07.

    Google Scholar 

  79. S.B. Singh and H.K.D.H. Bhadeshia: Mater. Sci. Eng., A, 1998, vol. 245, pp. 72–79.

    Article  Google Scholar 

  80. K. Lu, L. Lu, and S. Suresh: Science, 2009, vol. 324, pp. 349–52.

    Article  CAS  PubMed  ADS  Google Scholar 

  81. F.R.N. Nabarro: Proc. Phys. Soc., 1947, vol. 59, pp. 256–72.

    Article  CAS  ADS  Google Scholar 

  82. G.R. Speich and P.R. Swann: J. Iron Steel Inst., 1965, vol. 5, pp. 480–85.

    ADS  Google Scholar 

  83. D.W. Smith and R.F. Hehemann: J. Iron Steel Inst., 1971, vol. 209, pp. 478–81.

    Google Scholar 

  84. M. Takahashi and H. Bhadeshia: Mater. Sci. Technol., 1990, vol. 6, pp. 592–603.

    CAS  Google Scholar 

  85. C.E. Lacy and M. Gensamer: Trans. ASM, 1944, vol. 32, pp. 88–110.

    Google Scholar 

  86. S. Maropoulos, J.D.H. Paul, and N. Ridley: Mater. Sci. Technol., 1993, vol. 9, pp. 1014–19.

    CAS  Google Scholar 

  87. T. Gladman, I.D. Mcivor, and D. Dulieu: Proc. Int. Conf. on High Strength Low Alloy Steels—Microalloying 75, Union Carbide Corporation, New York, NY, 1977, pp. 32–55.

  88. H.K.D.H. Bhadeshia: Bainite in Steels, The Institute of Materials, London, United Kingdom, 1992, pp. 286–87.

    Google Scholar 

  89. U.F. Kocks, A.S. Argon, and M.F. Ashby: Prog. Mater. Sci., 1975, vol. 19, pp. 156–249.

    Google Scholar 

Download references

Acknowledgments

This research project was supported by the National Natural Science Foundation of China, Beijing, China (Grant No. 50571064), the Major State Basic Research Development Program of China, Beijing, China (973 Program) (Grant No. 2010CB630800), and the Shanghai Municipal Science and Technology Commission Foundation of China, Shanghai, China (Grant No. 0852nm02500). The authors thank the Instrumental Analysis Center of Shanghai Jiao Tong University for its help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.J. Jin.

Additional information

Manuscript submitted August 11, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Lu, X., Li, W. et al. Microstructure and Mechanical Properties of an Ultrahigh-Strength 40SiMnNiCr Steel during the One-Step Quenching and Partitioning Process. Metall Mater Trans A 41, 1284–1300 (2010). https://doi.org/10.1007/s11661-010-0184-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0184-8

Keywords

Navigation