Skip to main content
Log in

Intergranular Strain Evolution in a Zircaloy-4 Alloy with Basketweave Morphology

  • Symposium: Neutron and X-Ray Studies of Advanced Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A Zircaloy-4 alloy with Widmanstätten-Basketweave microstructure has been used to study the deformation behavior at the grain level. The evolution of internal strain and bulk texture is investigated using neutron diffraction and conventional microscopic techniques. The macroscopic behavior and intergranular strain development, parallel and perpendicular to the loading direction, were measured in situ during uniaxial tensile loading. It was observed that twinning plays a major role in both microstructural changes and polycrystalline plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.T. Hutchings, P.J. Withers, T.M. Holden, and T. Lorentzen: Introduction to the Characterization of Residual Stress by Neutron Diffraction, Taylor & Francis Group, LLC, Boca Raton, FL, 2005, pp. 233–54.

    Google Scholar 

  2. U.F. Knock, C.N. Tomé, and H.-R. Wenk: Texture and Anisotropy, Preferred Orientations in Polycrystals and Their Effect on Materials Properties, Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 467–510.

    Google Scholar 

  3. E. Tenckhoff: Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy, ASTM, Philadelphia, PA, 1988, pp. 13–19.

    Google Scholar 

  4. E. Tenckhoff: Metall. Trans. A, 1978, vol. 9A, pp. 1401–12.

    CAS  ADS  Google Scholar 

  5. R.G. Ballinger, G.E. Lucas, and R.M. Pelloux: J. Nucl. Mater., 1984, vol. 126, pp. 53–69.

    Article  CAS  ADS  Google Scholar 

  6. R.A. Holt: J. Nucl. Mater., 1970, vol. 35, pp. 322–34.

    Article  CAS  ADS  Google Scholar 

  7. V. Quach and D.O. Northwood: Metallography, 1984, vol. 17, pp. 191–201

    Article  CAS  Google Scholar 

  8. H.-R. Wenk, I. Lonardelli, and D. Williams: Acta Mater., 2004, vol.52, pp. 1899–1907.

    Article  CAS  Google Scholar 

  9. D. Ciurchea, A.V. Pop, C. Gheorghiu, I. Furtuna, M. Todica, A. Dinu, and M. Roth: J. Nucl. Mater., 1996, vol. 231, pp. 83–91.

    Article  CAS  ADS  Google Scholar 

  10. E.C. Bain: Trans. Am. Inst. Min. Metall. Eng., 1924, vol. 70, pp. 25–46.

    Google Scholar 

  11. D.W. Brown, M.A.M. Bourke, B. Clausen, D.R. Korzekwa, R.C. Korzekwa, R.J. McCabe, T.A. Sisneros, and D.F. Teter: Mater. Sci. Eng. A, 2009, vol. 512 (1–2), pp. 67–75.

    Google Scholar 

  12. E. Garlea, V.O. Garlea, H. Choo, C.R. Hubbard, and P.K. Liaw: Mater. Sci. Forum, 2007, vols. 539–543, pp. 1443–48.

    Article  Google Scholar 

  13. Wah Chang Company Technical Department, www.wahchang.com

  14. G.F.V. Voort: Metallography, Principles, and Practice, McGraw-Hill Book Co., New York, NY, 1984, p. 701.

    Google Scholar 

  15. M.A.M. Bourke, D.C. Dunand, and E. Üstündag: Appl. Phys. A, 2002, vol. 74, Suppl. II, pp. S1707–S1709.

    Article  CAS  ADS  Google Scholar 

  16. H.-R. Wenk, L. Lutterotti, and S. Vogel: Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 515, pp. 575–88.

    Article  CAS  ADS  Google Scholar 

  17. A.C. Larson and R.B. Von Dreele, “General Structure Analysis System (GSAS),” Los Alamos National Laboratory Report LAUR, 2000, pp. 86–748, http://www.ncnr.nist.gov/xtal/software/gsas.html.

  18. S. Matthies, J. Pehl, H.-R. Wenk, L. Lutterotti, and S.C. Vogel: J. Appl. Cryst., 2005, vol. 38 (3), pp. 462–75.

    Article  CAS  Google Scholar 

  19. S.C. Vogel, C. Hartig, L. Lutterotti, R.B. Von Dreele, H.-R. Wenk, and D.J. Williams: Powder Diffr., 2004, vol. 19 (1), pp. 65–68.

    Article  CAS  ADS  Google Scholar 

  20. H.M. Rietveld: J. Appl. Cryst., 1969, vol. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  21. R.B. Von Dreele: J. Appl. Cryst., 1997, vol. 30, pp. 517–25.

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (EG) acknowledges the support of the National Science Foundation International Materials Institutes Program (Grant No. DMR-0231320), Tennessee Advanced Materials Laboratory (TAML) Fellowship Program, and thanks Professor P.K. Liaw, University of Tennessee, for his guidance. EG also acknowledges R.L. Bridges, Y-12 National Complex Security, for help with the metallography. This work has benefited from the use of the Lujan Neutron Scattering Center, Los Alamos Neutron Science Center, which is funded by the Office of Basic Energy Sciences (United States Department of Energy (DOE)). Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE AC52 06NA25396. The EBSD analyses were conducted at the ORNL SHaRE User Facility, which is supported by the Division of Scientific User Facilities, Office of Science, DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Garlea.

Additional information

This article is based on a presentation given in the symposium “Neutron and X-Ray Studies of Advanced Materials,” which occurred February 15–19, 2009, during the TMS Annual Meeting in San Francisco, CA, under the auspices of TMS, TMS Structural Materials Division, TMS/ASM Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, and TMS: Titanium Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garlea, E., Clausen, B., Kenik, E.A. et al. Intergranular Strain Evolution in a Zircaloy-4 Alloy with Basketweave Morphology. Metall Mater Trans A 41, 1255–1260 (2010). https://doi.org/10.1007/s11661-010-0182-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0182-x

Keywords

Navigation