Skip to main content
Log in

Effect of deformation and heat treatment on the structure, the mechanical properties, and the fracture characteristics of an ultrafine-grained Zr–1Nb alloy

  • Advanced Materials and Technologies
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The effect of cold working and annealing for various times on the structure, the mechanical properties, and the fracture characteristics of an ultrafine-grained Zr–1 wt % Nb alloy after three-dimensional pressing is studied. Possible causes for increasing the thermal stability of the strength properties of the ultrafine-grained Zr–1 wt % Nb alloy during prerecrystallization annealing after additional cold working by rolling are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chao Yuan, Ruidong Fu, Fucheng Zhang, Xiangy Zhang, and Fengchao Liu, “Microstructure evolution and mechanical properties of nanocrystalline zirconium processed by surface circulation rolling treatment,” Mater. Sci. Eng. A 565, 27–32 (2013).

    Article  Google Scholar 

  2. S. O. Rogachev, “Structure and properties of zirconium alloys subjected to severe plastic deformation,” Cand. Sci. (Eng.) Dissertation Moscow, MISiS, 2010.

    Google Scholar 

  3. Ye. D. Tabachnikov, F. V. Podol’skii, V. Z. Benkus, S. N. Smirnov, and V. D. Natsik, “Mechanical properties of ultrafine-grained zirconium in the temperature range 4.2–300 K,” Fiz. Nizk. Temp. 34 (11), 1225–1233 (2008).

    Google Scholar 

  4. V. V. Rybin, Severe Plastic Deformation and Fracture of Metals (Metallurgiya, Moscow, 1986).

    Google Scholar 

  5. N. I. Noskova, “Mechanisms of deformation of nanocrystalline metals and alloys with different nanograin size distribution,” Deformat. Razrush. Mater., No. 4, 17–24 (2009).

    Google Scholar 

  6. V. Ye. Panin, V. Ye. Yegorushkin, and A. V. Panin, “Physical mesomechanics of a deformed solid as a multilevel system. I. Physical foundations of a multilevel approach,” Fiz. Mezomekh. 9 (3), 9–22 (2006).

    Google Scholar 

  7. N. Yu. Frolova, V. I. Zel’dovich, E. V. Shorokhov, A. E. Kheifets, I. V. Khomshaya, and P. A. Nasonov, “Heating-induced structural changes in titanium strengthened by dynamic channel-angular pressing and rolling,” Deform. Razrush. Mater. No.1, 34–39 (2013).

    Google Scholar 

  8. G. P. Grabovetskaya, Yu. R. Kolobov, and N. V. Girsova, “Effect of cold plastic deformation on the structure and deformation behavior of a submicrocrystalline titanium obtained by the method of equal-channel angular pressing,” Phys. Met. Metallogr. 98 (6), 632–638 (2004).

    Google Scholar 

  9. Yu. P. Sharkeev, A. Yu. Eroshenko, A. D. Bratchikov, Ye. V. Legostaeva, and V. A. Kukareko, “Structure and mechanical properties of nanostructured titanium after prerecrystallization annealing,” Fiz. Mezomekh., 8, Spets. Vypusk, 91–94 (2005).

    Google Scholar 

  10. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, A. P. Zhilyaev, E. F. Dudarev, K. V. Ivanov, M. B. Ivanov, O. A. Kashin, and E. V. Naidenkin, Grain-Boundary Diffusion and Properties of Nanostructured Materials (Nauka, Novosibirsk, 2001).

    Google Scholar 

  11. E. N. Stepanova, G. P. Grabovetskaya, I. P. Mishin, and D. Yu. Bulinko, “Structure and mechanical properties of a Zr–1Nb alloy, obtained by the method of severe plastic deformation,” Mater. Today Proc., No. 2, 365–369 (2015).

    Article  Google Scholar 

  12. E. F. Dudarev, G. P. Bakach, G. P. Grabovetskaya, Yu. R. Kolobov, O. A. Kashin, and L. V. Chernova, “Deformation behavior and plastic deformation localization at meso- and macroscale levels in submicrocrystalline titanium,” Fiz. Mezomekh. 4 (1), 97–104 (2001).

    Google Scholar 

  13. E. V. Kozlov, L. I. Trishkina, N. A. Popova, and N. A. Koneva, “Place of dislocation physics in a multilevel approach to plastic deformation,” Fiz. Mezomekh. 14 (3), 95–110 (2011).

    Google Scholar 

  14. Z. N. Yang, Y. Y. Xiao, F. C. Zhang, and Z. G. Yan, “Effect of cold rolling on microstructure and mechanical properties of pure Zr,” Mater. Sci. Eng. A 556, 728–733 (2012).

    Article  Google Scholar 

  15. V. G. Kirichenko and N. A. Azarenkov, Nuclear-Physical Metallography of Zirconium Alloys (Karazin Kharkov National University, Kharkov, 2012).

    Google Scholar 

  16. M. I. Goldshtein, V. S. Litvinov, and B. M. Bronfin, Physics of Metals of High-Strength Alloys (Metallurgiya, Moscow, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Grabovetskaya.

Additional information

Original Russian Text © G.P. Grabovetskaya, E.N. Stepanova, I.P. Mishin, V.A. Vinokurov, 2016, published in Deformatsiya i Razrushenie Materialov, 2016, No. 10, pp. 6–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabovetskaya, G.P., Stepanova, E.N., Mishin, I.P. et al. Effect of deformation and heat treatment on the structure, the mechanical properties, and the fracture characteristics of an ultrafine-grained Zr–1Nb alloy. Russ. Metall. 2017, 271–278 (2017). https://doi.org/10.1134/S0036029517040048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029517040048

Keywords

Navigation