Skip to main content
Log in

Crystal Structure and Dielectric Characterization of a (SrTiO3/BaTiO3) n Multilayer Film Prepared by Radio Frequency Magnetron Sputtering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

(SrTiO3/BaTiO3) n multilayer films with Pt bottom and top electrodes have been prepared by a double target radio frequency (RF) magnetron sputtering, and their dielectric properties have been characterized as a function of temperature, frequency, bias voltage, and applied voltage. The X-ray diffraction (XRD) pattern reveals that the deposited (SrTiO3/BaTiO3) n multilayer films have a designed modulation. The interfaces within the multilayer films appear smooth and dense without any microcracks, and the adhesion is very good. The dielectric constant of the (SrTiO3/BaTiO3) n multilayer film increases with increasing layer number (n), and the leakage current density is less than 1 × 10−8 A·cm−2 for the applied voltage less than 5 V for the 450-nm-thick (SrTiO3/BaTiO3) n multilayer films. The remanent polarization (P r ) and the coercive field (E c ) of the 350-nm-thick (SrTiO3/BaTiO3)4 multilayer films are 7 μC·cm−2 and 60 kV·cm−1, respectively, exhibiting ferroelectricity. (SrTiO3/BaTiO3)4 multilayer films have a high E c and a lower P r , as compared with the bulk BaTiO3 single crystal. The 450-nm-thick (SrTiO3/BaTiO3)4 multilayer films have a leakage current density-voltage characteristic, which makes them suitable for application in DRAMs capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. G.H. Haertling: J. Vac. Sci. Technol., A, 1991, vol. 9, pp. 414–20.

    Article  CAS  ADS  Google Scholar 

  2. D. Roy and S.B. Krupanidhi: Appl. Phys. Lett., 1992, vol. 61, pp. 2057–59.

    Article  CAS  ADS  Google Scholar 

  3. W.J. Merz: cited in F. Jona and G. Shirane: Ferroelectric Crystals, Pergamon, London, 1962, p. 115.

  4. H. Diamond: J. Appl. Phys., 1961, vol. 32, pp. 909–15.

    Article  CAS  ADS  Google Scholar 

  5. A.V. Turik and E.I. Bondarenko: Ferroelectrics, 1974, vol. 7, pp. 303–05.

    CAS  Google Scholar 

  6. R.E. Cohen: Nature, 1992, vol. 358, pp. 136–38.

    Article  CAS  ADS  Google Scholar 

  7. T. Tsurumi, T. Miyasou, Y. Ishibashi, and N. Oashi: Jpn. J. Appl. Phys., 1998, vol. 37, pp. 5104–07.

    Article  CAS  ADS  Google Scholar 

  8. I. Kanno, S. Hayashi, R. Takayama, and T. Hirao: Appl. Phys. Lett. 1996, vol. 68, pp. 328–30.

    Article  CAS  ADS  Google Scholar 

  9. S. Li, J.A. Eastman, J.M. Vetrone, R.E. Newnham, and L.E. Cross: Philos. Mag. B, 1997, vol. 76, pp. 47–57.

    Article  CAS  Google Scholar 

  10. N.A. Pertsen, G. Arit, and A.G. Zembilgotor: Phys. Rev. Lett., 1994, vol. 76, pp. 1364–67.

    Article  ADS  Google Scholar 

  11. J.V. Mantese, N.W. Schubring, A.L. Micheli, A.B.Catalan, M.S. Mohammed, R. Naik, and G.W. Auner: Appl. Phys. Lett., 1997, vol. 71, pp. 2047–49.

    Article  CAS  ADS  Google Scholar 

  12. D. Bao, L. Zhang, and X. Yao: J. Mater. Sci. Lett., 1999, vol. 18, pp. 21–23.

    Article  CAS  Google Scholar 

  13. B.D. Qu, M. Evstigneev, D.J. Johnson, and R.H. Prince: Appl. Phys. Lett., 1998, vol. 72, pp. 1394–96.

    Article  CAS  ADS  Google Scholar 

  14. D. O’Neill, R.M. Bowman, and J.M. Gregg: Appl. Phys. Lett., 2000, vol. 77, pp. 1520–22.

    Article  ADS  Google Scholar 

  15. D. O’Neill, R.M. Bowman, and J.M. Gregg: J. Mater. Sci.: Mater. Electron., 2000, vol. 11, pp. 537–41.

    Article  Google Scholar 

  16. J. Zhai, T.F. Hung, and H. Chen: Appl. Phys. Lett., 2004, vol. 85, pp. 2026–28.

    Article  CAS  ADS  Google Scholar 

  17. G. Koebernik, W. Haessler, R. Pantou, and F. Weiss: Thin Solid Films, 2004, vol. 449, pp. 80–85.

    Article  CAS  ADS  Google Scholar 

  18. B.R. Kim, T.U. Kim, W.J. Lee, J.H. Moon, B.T. Lee, H.S. Kim, and J.H. Kim: Thin Solid Films, 2007, vol. 515, pp. 6438–41.

    Article  CAS  ADS  Google Scholar 

  19. E. Wiener-Avnear: Appl. Phys. Lett., 1994, vol. 65, pp. 1784–86.

    Article  CAS  ADS  Google Scholar 

  20. T. Tsurumi, T. Suzuki, M. Yamane, and M. Daimon: Jpn. Appl. Phys., 1994, Part 1, vol. 33, pp. 5192–95.

  21. H.H. Huang, F.Y. Hsiao, N.C. Wu, and M.C. Wang: J. Non-Crystalline Solids, 2005, vol. 351, pp. 3809–15.

    Article  CAS  ADS  Google Scholar 

  22. B. Guigues, J. Guillan, E. Defaÿ, P. Garrec, D. Wolozen, B. André, F. Laugier, R. Pantel, X. Gagnard, and M. Aïd: J. Euro. Ceram. Soc., 2007, vol. 27, pp. 3851–54.

    Article  CAS  Google Scholar 

  23. B.D. Cullety: Elements of X-ray Diffraction, 2nd ed., Addison-Wesley, Reading, MA, 1978, pp. 284–86.

    Google Scholar 

  24. M. de Keijser, G.J.M. Dormans, P.J. van Veldhoven, and D.M. de Leeuw: Appl. Phys. Lett., 1991, vol. 59, pp. 3556–58.

    Article  ADS  Google Scholar 

  25. M.C. Wang, F.Y. Hsiao, C.H. His, and N.C. Wu: J. Cryst. Growth, 2002, vol. 246, pp. 78–84.

    Article  CAS  ADS  Google Scholar 

  26. M.C. Wang, F.Y. Hsiao, and N.C. Wu: J. Cryst. Growth, 2004, vol. 264, pp. 271–77.

    Article  CAS  ADS  Google Scholar 

  27. M.C. Wang, F.Y. Hsiao, H.H. Hung, and N.C. Wu: Jpn. J. Appl. Phys., 2004, vol. 43, pp. 6323–28.

    Article  CAS  ADS  Google Scholar 

  28. C.S. Hsi, F.Y. Huiao, N.C. Wu, and M.C. Wang: Solid-State Comm., 2003, vol. 125, pp. 633–36.

    Article  CAS  ADS  Google Scholar 

  29. G. Arlt, D. Hennings, and G. de With: J. Appl. Phys., 1985, vol. 58, pp. 1619–25.

    Article  CAS  ADS  Google Scholar 

  30. H.T. Martirena and J.C. Burfoot: J. Phys. C: Solid State Phys., 1974, vol. 17, pp. 3182–92.

    Article  ADS  Google Scholar 

  31. T. Horikawa, T. Makita, T. Kuroiwa, and N. Mikama: Jpn. J. Appl. Phys., 1995, vol. 34, pp. 5478–82.

    Article  CAS  ADS  Google Scholar 

  32. W.G. Mertz: Phys. Rev., 1951, vol. 81, pp. 1064–65.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council (Taiwan, Republic of China), under Contract Nos. NSC 89-2216-E-151-011 and NSC 97-2221-E-006-223, which are grateful acknowledged. Help with experimental work and suggestions from Professors M.P. Hung and M.H. Hon, Ms. L.J. Wang, and Mr. J.M. Chen are deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo-Chin Wang.

Additional information

Manuscript submitted June 14, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, WL., Lin, HJ., Hsiao, FY. et al. Crystal Structure and Dielectric Characterization of a (SrTiO3/BaTiO3) n Multilayer Film Prepared by Radio Frequency Magnetron Sputtering. Metall Mater Trans A 41, 1330–1337 (2010). https://doi.org/10.1007/s11661-010-0174-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0174-x

Keywords

Navigation