Skip to main content
Log in

Thickness dependence of structural, optical and luminescence properties of BaTiO3 thin films prepared by RF magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BaTiO3 thin films were deposited onto quartz substrates by RF magnetron sputtering. X-ray diffraction pattern showed the formation of BT thin films with a tetragonal structure with orientations along (101) plane. Average crystallite size increased from 12.52 to 14.87 nm as the film thickness increased from 207 to 554 nm. With the increase in film thickness, the structural disorder decreases and the crystalline quality of the films gradually improved. The film exhibited good adherence to the substrate and are crack free. X-ray photoelectron spectroscopy revealed the presence of barium, titanium and oxygen in BT film. An average transmittance of >80 % was observed for all the films. This high transmittance BT films in the visible region is suitable for various electro-optic applications. The transmittance spectra showed high UV-shielding properties. Optical band gap was found to decrease from 4.55 to 3.70 eV with increase of film thickness, whereas the refractive index was found to increase. The refractive index of the BT films can be tuned between 2.11 and 2.21 at 550 nm. The real and imaginary dielectric constants with increase in film thickness were investigated. The low dissipation factor of BT thin films makes it a promising material for frequency agile applications. The emission spectra of BT thin films consist of near band edge excitonic UV emission and defect related emission in the visible range. The PL emission bands in UV and visible region of BT thin films make them suitable for electro-optic devices and light emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.K. Evangelou, N. Konofaos, X. Aslanoglou, S. Kennou, C.B. Thomas, J. Mater. Sci. Semicond. Process. 4, 307 (2001)

    Article  Google Scholar 

  2. F. Hache, D. Richard, C. Flytzanis, J. Opt. Soc. Am. B 3, 1653 (1986)

    Article  Google Scholar 

  3. Y.K. Vayunandana Reddy, D. Mergel, S. Reuter, V. Buck, M. Sulkowski, J. Phys. D Appl. Phys. 39, 1168 (2006)

    Google Scholar 

  4. Y. Yang, J. Shi, W. Huang, S. Dai, L. Wang, J. Mater. Sci. 38, 1248 (2003)

    Google Scholar 

  5. Z.G. Hu, G.S. Wang, Z.M. Huang, J.H. Chu, J. Phys. Chem. Solids 64, 2450 (2003)

    Article  Google Scholar 

  6. S. Kasap, P. Capper, Springer Handbook of Electronic and Photonic Materials (Springer, New York, 2006)

    Google Scholar 

  7. H. Huang, X. Yao, Ceram. Int. 30, 1540 (2004)

    Google Scholar 

  8. M. Silvan, Surf. Coat. Technol. 151, 118 (2002)

    Article  Google Scholar 

  9. Y.K. Vayunandana Reddy, D. Mergel, S. Reuter, V. Buck, M. Sulkowski, J. Phys. D Appl. Phys. 39, 1168 (2006)

    Google Scholar 

  10. L.S. Cavalcante, M.F.C. Gurgel, A.Z. Simões, E. Longo, J.A. Varela, M.R. Joya, P.S. Pizani, Appl. Phys. Lett. 90, 011903 (2007)

    Article  Google Scholar 

  11. G.F.G. Freitas, R.S. Nasar, M. Cerqueira, D.M.A. Melo, E. Longo, J.A. Varela, Mater. Sci. Eng. A 434, 22 (2006)

    Article  Google Scholar 

  12. P. Ctibor, H. Ageorges, V. Stengl, N. Murafa, I. Pis, T. Zahoranova, V. Nehasil, Z. Pala, Ceram. Int. 37, 2567 (2011)

    Article  Google Scholar 

  13. Z.G. Hu, G.S. Wang, Z.M. Huang, X. Meng, Q. Zhao, J.H. Chu, J. Appl. Phys. A 78, 757 (2004)

    Article  Google Scholar 

  14. R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)

    Article  Google Scholar 

  15. M.M. El-Nahass, E.M. El-Menyawy, Mater. Sci. Eng. B 177, 150 (2012)

    Article  Google Scholar 

  16. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice Hall, Upper Saddleriver, 2001)

    Google Scholar 

  17. L. Xu, X. Li, Y. Chen, F. Xu, Appl. Surf. Sci. 257, 4037 (2011)

    Google Scholar 

  18. R. Swapna, M. Ashok, G. Muralidharan, M.C. Santhosh Kumar, J. Anal. Appl. Pyrolysis 102, 75 (2013)

    Article  Google Scholar 

  19. G.P. Daniel, V.B. Justinvictor, P.B. Nair, K. Joy, P. Koshy, P.V. Thomas, Physica B 405, 1786 (2010)

    Article  Google Scholar 

  20. P. Nair, V.B. Justinvictor, G.P. Daniel, K. Joy, P.V. Thomas, J. Mater. Sci.: Mater. Electron. (2013). doi:10.1007/s10854-013-1117-2

    Google Scholar 

  21. D. Gao, D. Xiao, J. Bi, P. Yu, G. Yu, W. Zhang, J. Zhu, Mater. Trans. 44, 1323 (2003)

    Article  Google Scholar 

  22. S.M. Mukhopadhyay, T.C.S. Chen, J. Mater. Res. 10, 1502 (1995)

    Article  Google Scholar 

  23. B. Chornik, V.A. Fuenzalida, C.R. Grahmann, R. Labbe, Vacuum 48, 161 (1997)

    Article  Google Scholar 

  24. B. Demri, M. Hage-Ali, M. Moritz, J.L. Kahn, D. Muster, Appl. Surf. Sci. 108, 245 (1997)

    Article  Google Scholar 

  25. E. Orhan, J.A. Varela, A. Zenatti, M.F.C. Gurgel, F.M. Pontes, E.R. Leite, E. Longo, P.S. Pizani, A. Beltràn, J. Andrès, Phys. Rev. B 71, 85119 (2005)

    Article  Google Scholar 

  26. F.M. Pontes, C.D. Pinheiroa, E. Longo, E.R. Leite, S.R. de Lazaro, R. Magnani, P.S. Pizani, T.M. Boschi, F. Lanciotti, J. Lumin. 104, 185 (2003)

    Article  Google Scholar 

  27. R. Li, S. Yabe, M. Yamashira, S. Momose, S. Yoshida, S. Yin, T. Sato, Mater. Chem. Phys. 75, 44 (2002)

    Google Scholar 

  28. J. Tauc, Mater. Res. Bull. 5(8), 729 (1970)

    Article  Google Scholar 

  29. A.E. Rakhshani, A.S. Al-Azab, J. Phys. Condens. Mater. 12, 8745 (2000)

    Article  Google Scholar 

  30. S.A. Al-Kuhaimi, Vacuum 51, 349 (1998)

    Article  Google Scholar 

  31. O. Zelaya-Angle, J.J. Alvarado-Gil, R. Lozada-Morales, H. Vargas, A.F. da Silva, Appl. Phys. Lett. 64, 291 (1994)

    Article  Google Scholar 

  32. H. Oumous, H. Hadiri, Thin Solid Films 386, 87 (2001)

    Article  Google Scholar 

  33. A. Zhong, J. Tan, H. Huang, S. Chen, M. Wang, S. Xu, Appl. Surf. Sci. 257, 4055 (2011)

    Google Scholar 

  34. R. Thielsch, K. Kaemmer, B. Holzapfel, L. Schultz, Thin Solid Films 301, 210 (1997)

    Article  Google Scholar 

  35. R. Jacobson, Phys. Thin Films 8, 98 (1975)

    Google Scholar 

  36. A. Goswami, Thin Film Fundamentals, 1st edn. (New Age International, New Delhi, 2005)

    Google Scholar 

  37. R. Vijayalakshmi, V. Rajendran, J. Dig, Nanomater. Biostruct. 5, 518 (2010)

    Google Scholar 

  38. L.V. Maneeshya, V.S. Anitha, S.S. Lekshmy, I.J. Berlin, P.B. Nair, G.P. Daniel, P.V. Thomas, K. Joy, J. Mater. Sci.: Mater. Electron. 24, 848–854 (2013)

    Google Scholar 

  39. L.V. Maneeshya, P.V. Thomas, K. Joy, J. Mater. Sci. Semicond. Process. (2015). doi:10.1016/j.mssp.2014.08.048

    Google Scholar 

  40. A.T. de Figueiredo, V.M. Longo, S. de Lazaro, V.R. Mastelaro, F.S. De Vicente, A.C. Hernandes, M.S. Li, J.A. Varela, E. Longo, J. Lumin. 126, 407 (2007)

    Article  Google Scholar 

  41. K. Joy, I.J. Berlin, P.B. Nair, J.S. Lakshmi, G.P. Daniel, P.V. Thomas, J. Phys. Chem. Solids 72, 677 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Joy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maneeshya, L.V., Anitha, V.S., Thomas, P.V. et al. Thickness dependence of structural, optical and luminescence properties of BaTiO3 thin films prepared by RF magnetron sputtering. J Mater Sci: Mater Electron 26, 2947–2954 (2015). https://doi.org/10.1007/s10854-015-2781-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2781-1

Keywords

Navigation