Skip to main content
Log in

Molecular Dynamics Simulations of Dislocation Activity in Single-Crystal and Nanocrystalline Copper Doped with Antimony

  • Symposium: Mechanical Behavior of Nanostructured Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Recent experimental and simulation results have indicated that high-temperature grain growth in nanocrystalline (NC) materials can be suppressed by introducing dopant atoms at the grain boundaries. However, the influence of grain boundary dopants on the mechanical behavior of stabilized NC materials is less clear. In this work, molecular dynamics (MD) simulations are used to study the impact of very low dopant concentrations (<1.0 at. pct Sb) on plastic deformation in single-crystal and NC Cu. A new interatomic potential for low Sb concentration Cu-Sb solid-solution alloys is used to model dopant/host and dopant/dopant interatomic interactions within the MD framework. In single-crystal models, the strained regions around the Sb atoms act as heterogeneous sources for partial dislocation nucleation; the stress associated with this process decreases with increasing Sb concentration. In NC models, MD simulations indicate that Sb dopants randomly dispersed at the grain boundaries cause an increase in the flow stress in NC Cu, implying that Sb atoms at the grain boundaries retard both grain boundary sliding and dislocation nucleation from grain boundary regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Gleiter: Acta Mater., 2000, vol. 48, pp. 1–29.

    Article  CAS  Google Scholar 

  2. W.W. Milligan: Encyclopedia of Comprehensive Structural Integrity, Elsevier, Oxford, United Kingdom, 2003.

    Google Scholar 

  3. H. Van Swygenhoven and J.R. Weertman: Mater. Today, 2006, vol. 9, pp. 24–31.

    Article  Google Scholar 

  4. R.A. Masumura, P.M. Hazzledine, and C.S. Pande: Acta Mater., 1998, vol. 46, pp. 4527–34.

    Article  CAS  Google Scholar 

  5. V.Y. Gertsman and R. Birringer: Scripta Metall. Mater., 1994, vol. 30, pp. 577–81.

    Article  CAS  Google Scholar 

  6. J. Weissmuller, J. Loffler, and M. Kleber: Nanostruct. Mater., 1995, vol. 6, pp. 105–14.

    Article  Google Scholar 

  7. S. Bansal, A. Saxena, K.T. Hartwig, and R.R. Tummala: J. Metastable Nanocryst. Mater., 2005, vol. 23, pp. 183–86.

    Article  CAS  Google Scholar 

  8. I.M. Ghauri, M.Z. Butt, and S.M. Raza: J. Mater. Sci., 1990, vol. 25, pp. 4782–84.

    Article  CAS  ADS  Google Scholar 

  9. H.D. Mengelberg, M. Meixner, and K. Lücke: Acta Metall., 1965, vol. 13, pp. 835–44.

    Article  CAS  Google Scholar 

  10. S.K. Ganapathi, D.M. Owen, and A.H. Chokshi: Scripta Metall. Mater., 1991, vol. 25, pp. 2699–2704.

    Article  Google Scholar 

  11. H. Natter, M. Schmelzer, M.S. Loffler, C.E. Krill, A. Fitch, and R. Hempelmann: J. Phys. Chem. B, 2000, vol. 104, pp. 2467–76.

    Article  CAS  Google Scholar 

  12. A.J. Haslam, S.R. Phillpot, D. Wolf, D. Moldovan, and H. Gleiter: Mater. Sci. Eng. A, 2001, vol. A318, pp. 293–312.

    CAS  Google Scholar 

  13. C.C. Koch, R.O. Scattergood, K.A. Darling, and J.E. Semones: J. Mater. Sci., 2008, vol. 43, pp. 7264–72.

    Article  CAS  ADS  Google Scholar 

  14. E. Botcharova, J. Freudenberger, and L. Schultz: Acta Mater., 2006, vol. 54, pp. 3333–41.

    Article  CAS  Google Scholar 

  15. K.V. Rajulapati, R.O. Scattergood, K.L. Murty, G. Duscher, and C.C. Koch: Scripta Mater., 2006, vol. 55, pp. 155–58.

    Article  CAS  Google Scholar 

  16. P.C. Millett, R.P. Selvam, and A. Saxena: Acta Mater., 2006, vol. 54, pp. 297–303.

    Article  CAS  Google Scholar 

  17. R. Rajgarhia, D.E. Spearot, and A. Saxena: Comp. Mater. Sci., 2008, vol. 44, pp. 1258–64.

    Article  Google Scholar 

  18. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress: Phys. Rev. B, 2001, vol. 63, pp. 224106 (1–16)

  19. A.G. Froseth, P.M. Derlet, and H. Van Swygenhoven: Acta Mater., 2004, vol. 52, pp. 5863–70.

    Article  CAS  Google Scholar 

  20. H. Van Swygenhoven, P.M. Derlet, and A.G. Froseth: Nature Mater., 2004, vol. 3, pp. 399–403.

    Article  ADS  Google Scholar 

  21. S. Erkoc: in Annual Review of Computational Physics, D. Stauffer, ed., vol. IX, World Scientific, Singapore, 2001, pp. 1–103

  22. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Fleiser, and K.K. Kelley: Selected Values of Thermodynamic Properties of Binary Alloys, ASM, Metals Park, OH, 1973.

    Google Scholar 

  23. R. Rajgarhia, D.E. Spearot, and A. Saxena: Model. Sim. Mater. Sci. Eng., 2009, vol. 17, pp. 055001 (1–13)

  24. M.A. Tschopp, D.E. Spearot, and D.L. McDowell: Model. Sim. Mater. Sci. Eng., 2007, vol. 15, pp. 693–709.

    Article  CAS  ADS  Google Scholar 

  25. S. Melchionna, G. Ciccotti, and B.L. Holian: Mol. Phys., 1993, vol. 78, pp. 533–44.

    Article  CAS  ADS  Google Scholar 

  26. D.E. Spearot, K.I. Jacob, and D.L. McDowell: Acta Mater., 2005, vol. 53, pp. 3579–89.

    Article  CAS  Google Scholar 

  27. D.E. Spearot, K.I. Jacob, and D.L. McDowell: Int. J. Plasticity, 2007, vol. 23, pp. 143–60.

    Article  MATH  CAS  Google Scholar 

  28. J.K. Mackenzie: Biometrika, 1958, vol. 45, pp. 229–40.

    MATH  MathSciNet  Google Scholar 

  29. C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton: Phys. Rev. B, 1998, vol. 58, pp. 11085-11088.

    Article  CAS  ADS  Google Scholar 

  30. D.E. Spearot, M.A. Tschopp, K.I. Jacob, and D.L. McDowell: Acta Mater., 2007, vol. 55, pp. 705–14.

    Article  CAS  Google Scholar 

  31. M.A. Tschopp and D.L. McDowell: J. Mech. Phys. Solids, 2008, vol. 56, pp. 1806–30.

    Article  MATH  CAS  ADS  Google Scholar 

  32. J. Schiotz: Scripta Mater., 2004, vol. 51, pp. 837–41.

    Article  CAS  Google Scholar 

  33. J. Schiotz and K.W. Jacobsen: Science, 2003, vol. 301, pp. 1357–59.

    Article  CAS  PubMed  ADS  Google Scholar 

  34. P.C. Millett, R.P. Selvam, and A. Saxena: Mater. Sci. Eng. A, 2006, vol. 431, pp. 92–99.

    Article  Google Scholar 

  35. J.C.M. Li: Phys. Rev. Lett., 2006, vol. 96, pp. 215506 (1–4)

Download references

Acknowledgments

Funding for this work is provided by the Irma and Raymond Giffels’ Endowed Chair in Engineering at the University of Arkansas. One of the authors (DES) appreciates additional support from Oak Ridge Associated Universities. Molecular dynamics simulations were performed on “Star of Arkansas,” funding for which was provided, in part, by the National Science Foundation under Grant MRI No. 072265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. Spearot.

Additional information

This article is based on a presentation given in the symposium entitled “Mechanical Behavior of Nanostructured Materials,” which occurred during the TMS Spring Meeting in San Francisco, CA, February 15–19, 2009, under the auspices of TMS, the TMS Electronic, Magnetic, and Photonic Materials Division, the TMS Materials Processing and Manufacturing Division, the TMS Structural Materials Division, the TMS Nanomechanical Materials Behavior Committee, the TMS Chemistry and Physics of Materials Committee, and the TMS/ASM Mechanical Behavior of Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajgarhia, R.K., Spearot, D.E. & Saxena, A. Molecular Dynamics Simulations of Dislocation Activity in Single-Crystal and Nanocrystalline Copper Doped with Antimony. Metall Mater Trans A 41, 854–860 (2010). https://doi.org/10.1007/s11661-010-0172-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0172-z

Keywords

Navigation