Skip to main content
Log in

Atomistic simulation of martensite-austenite phase transition in nanoscale nickel-titanium crystals

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Shape-memory (SM) alloys can, after initial inelastic deformation, reconstruct their pristine lattice structure upon heating. The underlying phenomenon is the structural solid-solid phase transition from low-temperature lower-symmetry martensite to the high-temperature higher-symmetry austenite. Conventional nickel-titanium (NiTi) with near-equiatomic concentration already possesses an eminent importance for many applications, whereas the nanostructured equivalent can exhibit yet enhanced thermomechanical properties. However, no plausible microscopic theory of the SM effect in NiTi exists, especially for nanoscale systems. We investigate the thermally induced martensite-austenite phase transition in free equiatomic nanocrystals, comprising up to approximately 40 000 atoms, by means of molecular-dynamics simulations (MD) using a classical Gupta-type many-body scheme. Thereby we complement and extend a previously published study [D. Mutter, P. Nielaba, Eur. Phys. J. B 84, 109 (2011)]. The structural transition, revealing features of a first-order phase transition, is demonstrated. It is contrasted with the melting phase transition, a quantum solid model and bulk experimental findings. Moreover, a nucleation-growth process is observed as well as the irreversibility of the transition upon cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford University Press, 1987)

  2. I.A. Solov’yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov’yov, J. Comput. Chem. 33, 2412 (2012)

    Article  Google Scholar 

  3. G. Zhao et al., Nature 497, 643 (2013)

    Article  ADS  Google Scholar 

  4. A.D. MacKerell, B. Brooks, C.L. Brooks, L. Nilsson, B. Roux, Y. Won, M. Karplus, in The Encyclopedia of Computational Chemistry (John Wiley & Sons, Chichester, 1998), Vol. 1, pp. 271–277

  5. A.V. Verkhovtsev, S. Schramm, A.V. Solov’yov, Eur. Phys. J. D 68, 246 (2014)

    Article  ADS  Google Scholar 

  6. P.L. Freddolino, C.B. Harrison, Y. Liu, K. Schulten, Nat. Phys. 6, 751 (2010)

    Article  Google Scholar 

  7. G.B. Sushko, A.V. Verkhovtsev, C. Kexel, A. Korol, S. Schramm, A. Solov’yov, submitted (2015)

  8. C. Vega, J.L. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011)

    Article  Google Scholar 

  9. J.W. Christian, The theory of transformations in metals and alloys (Part I) – Equilibrium and general kinetic theory (Pergamon Press, 1981)

  10. K. Otsuka, T. Kakeshita, MRS Bulletin 27, 91 (2002)

    Article  Google Scholar 

  11. V. Pushin, R. Valiev, Solid State Phenomena 94, 13 (2003)

    Article  Google Scholar 

  12. T. Waitz, H.P. Karnthaler, Acta Materialia 52, 5461 (2004)

    Article  Google Scholar 

  13. L. Mishnaevsky et al., Mater. Sci. Eng. 81, 1 (2014)

    Article  Google Scholar 

  14. R.G. De Lange, J.A. Zijderveld, J. Appl. Phys. 39, 2195 (1968)

    Article  ADS  Google Scholar 

  15. G.M. Michal, R. Sinclair, Acta Crystallographica 37, 1803 (1981)

    Article  Google Scholar 

  16. K. Otsuka, T. Sawamura, K. Shimizu, Phys. Stat. Sol. A 5, 457 (1971)

    Article  ADS  Google Scholar 

  17. S.D. Prokoshkin, A. Korotitskiy, V. Brailovski, S. Turenne, I.Y. Khmelevskaya, I.B. Trubitsyna, Acta Materialia 52, 4479 (2004)

    Article  Google Scholar 

  18. P. Sittner, P. Lukas, D. Neov, V. Novak, D.M. Többens, J. Phys. IV (France) 112, 709 (2003)

    Article  Google Scholar 

  19. N. Hatcher, O.Y. Kontsevoi, A. Freeman, Phys. Rev. B 80, 144203 (2009)

    Article  ADS  Google Scholar 

  20. X. Huang, G.J. Ackland, K.M. Rabe, Nat. Mater. 2, 307 (2003)

    Article  ADS  Google Scholar 

  21. T. Hara, T. Ohba, E. Okunishi, K. Otsuka, Mater. Trans. JIM 38, 11 (1997)

    Article  Google Scholar 

  22. Y. Fu, C. Shearwood, Scripta Materialia 50, 319 (2004)

    Article  Google Scholar 

  23. J. Ye, R.K. Mishra, A.R. Pelton, A.M. Minor, Acta Materialia 58, 490 (2010)

    Article  Google Scholar 

  24. R. Mirzaeifar, K. Gall, T. Zhu, A. Yavari, R. DesRoches, J. Appl. Phys. 115, 194307 (2014)

    Article  ADS  Google Scholar 

  25. D. Mutter, P. Nielaba, J. Alloys Compd. 577, 83 (2013)

    Article  Google Scholar 

  26. T. Sato, K. Saitoh, N. Shinke, Modell. Simul. Mater. Sci. Eng. 14, S39 (2006)

    Article  ADS  Google Scholar 

  27. P.H. Sung, C.D. Wu, T.H. Fang, C.I. Weng, Appl. Surf. Sci. 258, 7064 (2012)

    Article  ADS  Google Scholar 

  28. C.D. Wu, P.H. Sung, T.H. Fang, J. Mol. Model. 19, 1883 (2013)

    Article  Google Scholar 

  29. D. Mutter, P. Nielaba, Eur. Phys. J. B 84, 109 (2011)

    Article  ADS  Google Scholar 

  30. D. Mutter, P. Nielaba, Phys. Rev. B 82, 224201 (2010)

    Article  ADS  Google Scholar 

  31. P. Pawlow, Zeit. Phys. Chem. 65, 545 (1909)

    Google Scholar 

  32. A.V. Yakubovich, G. Sushko, S. Schramm, A.V. Solov’yov, Phys. Rev. B 88, 035438 (2013)

    Article  ADS  Google Scholar 

  33. J. Wang, H. Duan, Z. Huang, B. Karihaloo, Proc. R. Soc. London A 462, 1355 (2006)

    Article  MATH  ADS  Google Scholar 

  34. R.P. Gupta, Phys. Rev. B 23, 6265 (1981)

    Article  ADS  Google Scholar 

  35. M.W. Finnis, J.E. Sinclair, Philos. Mag. A 50, 45 (1984)

    Article  ADS  Google Scholar 

  36. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984)

    Article  ADS  Google Scholar 

  37. F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993)

    Article  ADS  Google Scholar 

  38. M. Born, J.E. Mayer, Zeit. Phys. 75, 1 (1932)

    Article  ADS  Google Scholar 

  39. A.V. Verkhovtsev, M. Hanauske, A.V. Yakubovich, A.V. Solov’yov, Comput. Mater. Sci. 76, 80 (2013)

    Article  Google Scholar 

  40. G.B. Sushko, A.V. Verkhovtsev, A.V. Solov’yov, J. Phys. Chem. A 118, 8426 (2014)

    Article  Google Scholar 

  41. A.V. Verkhovtsev, G.B. Sushko, A.V. Yakubovich, A.V. Solov’yov, Comput. Theor. Chem. 1021, 101 (2013)

    Article  Google Scholar 

  42. W.S. Lai, B.X. Liu, J. Phys.: Condens. Matter 12, L53 (2000)

    ADS  Google Scholar 

  43. A.V. Yakubovich, A.V. Verkhovtsev, M. Hanauske, A.V. Solov’yov, Comput. Mater. Sci. 76, 60 (2013)

    Article  Google Scholar 

  44. http://www.mbnexplorer.com/users-guide

  45. M. Born, K. Huang, Dynamical theory of crystal lattices (Oxford University Press, 1966)

  46. D.P. Dautovich, Z. Melkvi, G.R. Purdy, C.V. Stager, J. Appl. Phys. 37, 2513 (1966)

    Article  ADS  Google Scholar 

  47. F.E. Wang, W.J. Buehler, S.J. Pickart, J. Appl. Phys. 36, 3232 (1965)

    Article  ADS  Google Scholar 

  48. R. Wasilewski, S. Butler, J. Hanlon, Metal Sci. 1, 104 (1967)

    Article  Google Scholar 

  49. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary alloy phase diagrams (ASM International, 1990)

  50. C. Kexel, A.V. Verkhovtsev, G.B. Sushko, A.V. Korol, S. Schramm, A.V. Solov’yov (in preparation)

  51. J.H. Bang, K.S. Suslick, Adv. Mater. 22, 1039 (2010)

    Article  Google Scholar 

  52. S.N. Luo, T.J. Ahrens, T. Çağın, A. Strachan, W.A. Goddard, D.C. Swift, Phys. Rev. B 68, 134206 (2003)

    Article  ADS  Google Scholar 

  53. Z. Güvenç, J. Jellinek, Zeit. Phys. D 26, 304 (1993)

    Article  ADS  Google Scholar 

  54. F. Calvo, F. Spiegelmann, J. Chem. Phys. 112, 2888 (2000)

    Article  ADS  Google Scholar 

  55. E. Goo, R. Sinclair, Acta Metallurgica 33, 1717 (1985)

    Article  Google Scholar 

  56. J. Khalil-Allafi, B. Amin-Ahmadi, J. Alloys Compd. 487, 363 (2009)

    Article  Google Scholar 

  57. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220, 671 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kexel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kexel, C., Schramm, S. & Solov’yov, A. Atomistic simulation of martensite-austenite phase transition in nanoscale nickel-titanium crystals. Eur. Phys. J. B 88, 221 (2015). https://doi.org/10.1140/epjb/e2015-60413-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60413-x

Keywords

Navigation