Skip to main content
Log in

Stress Corrosion and Corrosion Fatigue Crack Growth of Zr-Based Bulk Metallic Glass in Aqueous Solutions

  • Symposium: Bulk Metallic Glasses VI
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Crack-propagation tests on a bulk metallic glass (BMG), Zr55Cu30Ni5Al10, were conducted either in aqueous sodium chloride (NaCl) solutions or in high-purity water under sinusoidal cyclic loading or sustained loading. Although the crack growth rate in high-purity water was almost identical to that in air, the rate in the NaCl solution was much higher than that in air, even in a very low concentration of NaCl such as 0.01 mass pct. In a 3.5 mass pct NaCl solution, the time-based crack growth rate during cyclic loading, da/dt, was determined by the maximum stress-intensity factor, K max, but was almost independent of the loading frequency and the stress ratio, and the rate was close to that of stress corrosion cracking (SCC) under a sustained loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.L. Johnson: Curr. Opin. Solid State Mater. Sci., 1996, vol. 1, pp. 383–86.

    Article  CAS  Google Scholar 

  2. H.J. Leamy, H.S. Chen, and T.T. Wang: Metall. Trans., 1972, vol. 3, pp. 699–708.

    Article  CAS  Google Scholar 

  3. V. Schroeder, C.J. Gilbert, and R.O. Ritchie: Scripta Mater., 1998, vol. 38, pp. 1481–85.

    Article  CAS  Google Scholar 

  4. W.H. Peter, R.A. Buchanan, C.T. Liu, P.K. Liaw, M.L. Morrison, J.A. Horton, C.A. Carmichael, Jr., and J.L. Wright: Intermetallics, 2002, vol. 10, pp. 1157–62.

    Article  CAS  Google Scholar 

  5. M. Ishida, H. Takeda, N. Nishiyama, K. Amiya, K. Kita, Y. Shimizu, D. Watanabe, E. Fukushima, Y. Saotome, and A. Inoue: Materia Jpn., 2005, vol. 44, pp. 431–33.

    Google Scholar 

  6. Y. Nakai and S. Hosomi: Mater. Trans., 2007, vol. 48, pp. 1770–73.

    Article  CAS  Google Scholar 

  7. Y. Nakai, N. Sei, and B.K. Kim: Key Eng. Mater., 2007, vols. 345–346, pp. 259–62.

    Article  Google Scholar 

  8. Y. Nakai, K. Sakai, and K. Nakagawa: Adv. Eng. Mater., 2008, vol. 10, pp. 1026–29.

    Article  CAS  Google Scholar 

  9. Y. Nakai and M. Seki: J. Soc. Mater. Sci., Jpn., 2007, vol. 56, pp. 229–35.

    Article  Google Scholar 

  10. Y. Nakai and M. Seki: Key Eng. Mater., 2008, vols. 378–379, pp. 317–28.

    Article  Google Scholar 

  11. V. Schroeder, C.J. Gilbert, and R.O. Ritchie: Scripta Mater., 1999, vol. 40, pp. 1057–61.

    Article  CAS  Google Scholar 

  12. R.O. Ritchie, V. Schroeder, and C.J. Gilbert: Intermetallics, 2000, vol. 8, pp. 469–75.

    Article  CAS  Google Scholar 

  13. V. Schroeder and R.O. Ritchie: Acta Mater., 2006, vol. 54, pp. 1785–94.

    Article  CAS  Google Scholar 

  14. A. Kawashima, H. Kurishita, H. Kimura, and A. Inoue: Mater. Trans., 2007, vol. 48, pp. 1969–72.

    Article  CAS  Google Scholar 

  15. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 2nd ed., John Wiley & Sons, New York, NY, 1983, p. 439.

    Google Scholar 

  16. Y. Nakai, A. Alavi, and R.P. Wei: Metall. Trans. A, 1988, vol. 19A, pp. 543–48.

    CAS  ADS  Google Scholar 

  17. R.P. Wei: Fatigue Mechanisms, ASTM STP 675, J.T. Fong, ed., ASTM, West Conshohocken, PA, 1979, pp. 816–40.

  18. V. Schroeder, C.J. Gilbert, and R.O. Ritchie: Mater. Sci. Eng., A, 2001, vol. 317, pp. 145–52.

    Article  Google Scholar 

  19. M.L. Morrison, R.A. Buchanan, P.K. Liaw, B.A. Green, G.Y. Wang, C.T. Liu, and J.A. Horton: Mater. Sci. Eng., A, 2007, vol. 467, pp. 198–206.

    Article  Google Scholar 

  20. D. Suh and R.H. Dauskardt: Scripta Mater., 2000, vol. 42, pp. 233–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support for this work provided by the Grant-in-Aid for Scientific Research on Priority Areas “Materials Science of Bulk Metallic Glasses,” Ministry of Education, Culture, Sports, Science, and Technology (Tokyo, Japan) (head investigator: Dr. A. Inoue, President of Tohoku University, Sendai, Japan) and the Kansai Research Foundation for Technology Promotion (Osaka, Japan) (head investigator: Professor Y. Nakai, Kobe University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Nakai.

Additional information

This article is based on a presentation given in the symposium “Bulk Metallic Glasses VI,” which occurred during the TMS Annual Meeting, February 15–19, 2009, in San Francisco, CA, under the auspices of TMS, the TMS Structural Materials Division, TMS/ASM: Mechanical Behavior of Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakai, Y., Yoshioka, Y. Stress Corrosion and Corrosion Fatigue Crack Growth of Zr-Based Bulk Metallic Glass in Aqueous Solutions. Metall Mater Trans A 41, 1792–1798 (2010). https://doi.org/10.1007/s11661-009-9945-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9945-7

Keywords

Navigation