Skip to main content
Log in

Microstructure of Equal-Channel Angular Pressed Cu and Cu-Zr Samples Studied by Different Methods

  • Symposium: Neutron and X-Ray Studies of Advanced Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Polycrystalline samples of technical-purity Cu (99.95 wt pct) and Cu with 0.18 wt pct Zr have been processed at room temperature by equal-channel angular pressing (ECAP). The microstructure evolution and its fragmentation after ECAP were investigated by transmission electron microscopy (TEM), electron backscattered diffraction (EBSD), positron annihilation spectroscopy (PAS), and by X-ray diffraction (XRD) line-profile analysis. The first two techniques revealed an increase in the fraction of high-angle grain boundaries (HAGBs), with increasing strain reaching the value of 90 pct after eight ECAP passes. The increase was more pronounced for pure Cu samples. The following two kinds of defects were identified in ECAP specimens by PAS: (1) dislocations that represent the dominant kind of defects and (2) small vacancy clusters (so-called microvoids). A detailed XRD line-profile analysis was performed by the analysis of individual peaks and by total profile fitting. A slight increase in the dislocation density with the number of ECAP passes agreed with the PAS results. Variations in microstructural features obtained by TEM and EBSD can be related to the changes in the XRD line-broadening anisotropy and dislocation-correlation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. Struers is a trademark of Struers A/S, Ballerup, Denmark.

  3. Carl Zeiss is a trademark of Carl Zeiss Semiconductor technologies A.G., Jena, Germany.

  4. HKL Oxford Instruments is a trademark of Oxford Instruments Nanoanalysis, Bucks, UK.

  5. HKL Oxford Instruments is a trademark of Oxford Instruments Nanoanalysis, Bucks, UK.

  6. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

  7. Instron is a trademark of Instron Ltd., High Wycombe, UK.

References

  1. R.Z. Valiev, R.K. Islamgaliev, and V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  2. Investigations and Applications of Severe Plastic Deformation, T.C. Lowe and R.Z. Valiev, eds., Kluwer, Dordrecht, The Netherlands, 2000.

  3. B. Mingler, H.P. Karnthaler, M. Zehetbauer, and R.Z. Valiev: Mater. Sci. Eng., A, 2001, vols. A319–A321, pp. 242–45.

    Google Scholar 

  4. O.V. Mishin, D. Juul Jensen, and N. Hansen: Mater. Sci. Eng., A, 2003, vol. A342, pp. 320–28.

    CAS  Google Scholar 

  5. F.H. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, and E.V. Pereloma: Acta Mater., 2004, vol. 52, pp. 4819–32.

    Article  CAS  Google Scholar 

  6. J. Lian, R.Z. Valiev, and B. Baudelet: Acta Metall., 1995, vol. 43, pp. 4165–70.

    Article  CAS  Google Scholar 

  7. Y. Estrin, R.J. Hellmig, and H.S. Kim: J. Metastable Nanocryst. Mater., 2003, vol. 17, pp. 29–36.

    Article  CAS  Google Scholar 

  8. C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon: J. Alloys Compd., 2004, vol. 378, pp. 27–34.

    Article  CAS  Google Scholar 

  9. K.S. Siow, A.A.O. Tay, and P. Oruganti: Mater. Sci. Technol., 2004, vol. 20, pp. 285–94.

    Article  CAS  Google Scholar 

  10. P.G. Sanders, J.A. Eastman, and J.R. Weertman: Acta Mater., 1997, vol. 45, pp. 4019–25.

    Article  CAS  Google Scholar 

  11. S.R. Agnew and J.R. Weertman: Mater. Sci. Eng., A, 1998, vol. A244, pp. 145–53.

    CAS  Google Scholar 

  12. P.G. Sanders, M. Rittner, E. Kiedaish, J.R. Weertman, H. Kung, and Y.C. Lu: Nanostruct. Mater., 1997, vol. 9, pp. 433–40.

    Article  CAS  Google Scholar 

  13. Y. Estrin, L.S. Tóth, A. Molniari, and Y. Bréchet: Acta Mater., 1998, vol. 46, pp. 5509–22.

    Article  CAS  Google Scholar 

  14. S.C. Baik, Y. Estrin, H.S. Kim, and R.J. Hellmig: Mater. Sci. Eng., A, 2003, vol. A351, pp. 86–97.

    CAS  Google Scholar 

  15. K.T. Aust, U. Erb, and G. Palumbo: Mater. Sci. Eng., A, 1994, vol. A176, pp. 329–34.

    Google Scholar 

  16. N.Q. Chinh, J. Gubicza, and T.G. Langdon: J. Mater. Sci., 2007, vol. 42, pp. 1594–1605.

    Article  CAS  ADS  Google Scholar 

  17. F.H. Dalla Torre, A.Z. Gazder, E.V. Pereloma, and C.H.J. Davis: J. Mater. Sci., 2007, vol. 42, pp. 1622–37.

    Article  CAS  ADS  Google Scholar 

  18. J. Čížek, I. Procházka, R. Kužel, and R.K. Islamgaliev: Monatsh. Chem., 2002, vol., pp. 873–87.

  19. M. Janeček, B. Hadzima, R.J. Hellmig, and Y. Estrin: Metallic Mater., 2005, vol. 43A, pp. 258–71.

    Google Scholar 

  20. P. Hautojärvi and C. Corbel: in Proc. Int. School Phys.: Enrico Fermi, A. Dupasquier and A.P. Mills, eds., course CXXV, IOS Press, Varena, Italy, 1995, p. 491.

  21. F. Bečvář, J. Čížek, and L. Lešták: Nucl. Instrum. Methods A., 2000, vol. 443, pp. 557–77.

    Article  ADS  Google Scholar 

  22. I. Procházka, I. Novotný, and F. Bečvář: Mater. Sci. Forum, 1997, vols. 255–257, pp. 772–74.

    Article  Google Scholar 

  23. Z. Matěj, L. Nichtová, and R. Kužel: Mater. Struct., 2008, vol. 15, pp. 46–49, open access: http://www.xray.cz/ms.

  24. M.H. Shih, C.Y. Yu, P.W. Kao, and C.P. Chang: Scripta Mater., 2001, vol. 45, pp. 793–99.

    Article  CAS  Google Scholar 

  25. Y.M. Wang and E. Ma: Appl. Phys. Lett., 2003, vol. 83, pp. 3165–67.

    Article  CAS  ADS  Google Scholar 

  26. DA. Hughes and N. Hansen: Acta Mater., 1997, vol. 45, pp. 3871–86.

    Article  CAS  Google Scholar 

  27. O.V. Mishin, D. Juul Jensen, and N. Hansen: Proc. 21st Risø Int. Symp. Mater. Sci.: Recrystallisation-Fundamental Aspects and Relations to Deformation Microstructure, N. Hansen, D. Huang, and D. Juul Jensen, eds., National Laboratory, Roskilde, Denmark, 2000, pp. 445–49.

  28. D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–87.

    Article  CAS  Google Scholar 

  29. J.K. Mackenzie: Acta Metall., 1964, vol. 12, pp. 223–25.

    Article  CAS  Google Scholar 

  30. M. Dopita, M. Janeček, D. Rafaja, J. Uhlíř, Z. Matěj, and R. Kužel: Int. J. Mat. Res., 2009, vol. 100, p. 6, DOI: 10.3139/146.110111.

  31. C.X. Huang, K. Wang, S.D. Wu, Z.F. Zhang, G.Y. Li, and S.X. Li: 2006 Acta Mater. vol. 54, pp. 655–65.

  32. X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhh, R.Z. Valiev, and D.V. Gunderov: Appl. Phys. Lett., 2004, vol. 84, p. 592, DOI: 10.1063/1644051.

    Article  CAS  ADS  Google Scholar 

  33. J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1–157.

    Article  Google Scholar 

  34. E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1223–33.

    Article  CAS  Google Scholar 

  35. V. Randle: Acta Mater., 2004, vol. 52, pp. 4067–81.

    Article  CAS  Google Scholar 

  36. B. Barbiellini, M.J. Puska, T. Torsti, and R.M. Nieminen: Phys. Rev. B, 1994, vol. 51, pp. 7341–44.

    Article  ADS  Google Scholar 

  37. T.A. McKee, S. Saimoto, A.T. Stewart, and M.J. Scott: Can. J. Phys., 1974, vol. 52, pp. 759–65.

    CAS  ADS  Google Scholar 

  38. J. Čížek, I. Procházka, P. Vostrý, F. Chmelík, and R.K. Islamgaliev: Acta Phys. Pol., A, 1999, vol. 95, pp. 487–92.

    Google Scholar 

  39. J. Čížek, I. Procházka, M. Cieslar, R. Kužel, J. Kuriplach, F. Chmelík, I. Stulíkova, F. Bečvář, and O. Melikhova: Phys. Rev. B, 2002, vol. 65, p. 094106.

    Article  ADS  Google Scholar 

  40. Program Difpatan: http://krystal.karlov.mff.cuni.cz/priv/kuzel/difpatan/default.htm.

  41. Th.H. de Keijser, J.I. Langford, E.J. Mittemeijer, and A.B.P. Vogels: J. Appl. Cryst., 1982, vol. 15, pp. 308–13.

    Article  Google Scholar 

  42. Z. Matěj, R. Kužel, M. Dopita, M. Janeček, J. Čížek, and T. Brunátová: Int. J. Mater. Sci., 2009, vol. 100, DOI: 10.3139/146.110112.

  43. M.A. Krivoglaz, O.V. Martynenko, and K.P. Ryaboshapka: Fiz. Met. Metalloved., 1983, vol. 55, pp. 5–17.

    CAS  Google Scholar 

  44. R. Kužel: Z. Kristallogr., 2007, vol. 222, pp. 136–49.

    Article  Google Scholar 

  45. E. Wu, A. MacGray, E. H. Kisi: J. Appl. Cryst., 1998, vol. 31, pp. 356–62.

    Article  CAS  Google Scholar 

  46. M. Leoni, T. Confente, and P. Scardi: Z. Kristallogr., 2006, suppl. 23, pp. 249–54.

  47. M. Leoni, J. Martinez-Garcia, and P. Scardi: J. Appl. Crystallogr., 2007, vol. 40, pp. 719–24.

    Article  CAS  Google Scholar 

  48. P. Scardi and M. Leoni: J. Appl. Crystallogr., 2006, vol. 39, pp. 24–31.

    Article  CAS  Google Scholar 

  49. L. Balogh, J. Gubicza, R.J. Hellmig, Y. Estrin, and T. Ungár: Z. Kristallogr., 2006, suppl. 23, pp. 318–86.

Download references

Acknowledgments

This work was financially supported by the research program MSM 0021620834 of the Ministry of Education of the Czech Republic. One of the authors (OS) acknowledges the financial support provided by the Grant Agency of the Charles University (GAUK) under Grant No. 81108. Partial financial support from the Academy of Sciences of the Czech Republic under Grants Nos. ME08022 and KAN400720701 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kužel.

Additional information

This article is based on a presentation given in the symposium entitled “Neutron and X-Ray Studies of Advanced Materials” which occurred February 15–19, 2009 during the TMS Annual Meeting in San Francisco, CA, under the auspices of TMS, TMS Structural Materials Division, TMS/ASM Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, and TMS: Titanium Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kužel, R., Janeček, M., Matěj, Z. et al. Microstructure of Equal-Channel Angular Pressed Cu and Cu-Zr Samples Studied by Different Methods. Metall Mater Trans A 41, 1174–1190 (2010). https://doi.org/10.1007/s11661-009-9895-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9895-0

Keywords

Navigation