Skip to main content
Log in

Quantitative Local Atomic Displacements from Huang Scattering Normalized by Thermal Diffuse Scattering

  • Symposium: Neutron and X-Ray Studies of Advanced Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The three-dimensional (3-D) pattern of atomic displacements at the core of a small defect or defect cluster embedded in a bulk crystal is possible to measure in principle, but difficult to obtain in practice, especially if quantitative displacements are desired. Here, it is demonstrated that a least-squares fit to the single-crystal X-ray Huang-scattering distribution surrounding an intense Bragg peak is a practical means of obtaining quantitative displacements when thermal diffuse scattering is used as an internal intensity standard. After fitting a model based on local Kanzaki forces embedded within an elastic continuum, the use of finite-defect and point-defect methods of computing and interpreting the pattern of local displacements are compared and contrasted. To make the analysis general with regard to both crystal symmetry and defect symmetry, numerical Fourier transforms are employed rather than pursuing analytical expressions for the displacements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Kanzaki: J. Phys. Chem. Solids, 1957, vol. 2, pp. 24–36.

    Article  MathSciNet  ADS  Google Scholar 

  2. H. Kanzaki: J. Phys. Chem. Solids, 1957, vol. 2, pp. 107–14.

    Article  MathSciNet  ADS  Google Scholar 

  3. A.A. Maradudin, E.W. Montroll, and G.H. Weiss: Theory of Lattice Dynamics in the Harmonic Approximation, Academic Press, New York, NY, 1963.

    Google Scholar 

  4. M.A. Krivoglaz: Theory of X-ray and Thermal Neutron Scattering by Real Crystals, Plenum, New York, NY, 1969.

    Google Scholar 

  5. W.A. Wooster: Diffuse X-ray Reflections from Crystals, Clarendon Press, New York, NY, 1962.

    Google Scholar 

  6. K.G. Huang: Proc. R. Soc. A, 1947, vol. 190, pp. 102–17.

    Article  CAS  ADS  Google Scholar 

  7. H. Trinkaus: Phys. Status Solidi B, 1972, vol. 51, pp. 307–19.

    Article  CAS  ADS  Google Scholar 

  8. R. Khanna: Pramana, 1983, vol. 20, pp. 279–86.

    Article  CAS  MathSciNet  ADS  Google Scholar 

  9. T.R. Welberry: Diffuse X-ray Scattering and Models of Disorder, Oxford University Press, New York, NY, 2004.

    Google Scholar 

  10. B.C. Larson: J. Appl. Cryst., 1975, vol. 8, pp. 150–60.

    Article  Google Scholar 

  11. B.T.M. Willis: in International Tables of Crystallography, E. Prince, ed., Kluwer Academic, New York, NY, 2004, vol. C, Sec. 7.4.2.

  12. L.A. Charnyi, K.D. Sherbachev, and V.T. Bublik: Phys. Status Solidi A, 1991, vol. 128, pp. 303–09.

    Article  CAS  ADS  Google Scholar 

  13. M.A. Krivoglaz: Fiz. Met. Metalloved, 1960, vol. 10, pp. 9–26.

    Google Scholar 

  14. Y. Tokura: Colossal Magnetorestive Oxides, Gordon and Breach, Amsterdam, 2000.

    Google Scholar 

  15. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer: Phys. Rev. Lett., 1993, vol. 71, pp. 2331–33.

    Article  ADS  Google Scholar 

  16. S.J.L. Billinge, R.G. DiFrancesco, G.H. Kwei, J.J. Neumeier, and J.D. Thompson: Phys. Rev. Lett., 1996, vol. 77, pp. 715–18.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. B.J. Campbell, S.K. Sinha, R. Osborn, S. Rosenkranz, J.F. Mitchell, D.N. Argyriou, L. Vasiliu-Doloc, O.H. Seeck, and J.W. Lynn: Phys. Rev. B, 2003, vol. 67, art. no. 020409(R).

  18. D.N. Argyriou, H.N. Bordallo, B.J. Campbell, A.K. Cheetham, D.E. Cox, J.S. Gardner, K. Hanif, A. dos Santos, and G.F. Strouse: Phys. Rev. B, 2000, vol. 61, pp. 15269–76.

    Article  CAS  ADS  Google Scholar 

  19. D.N. Argyriou, J.W. Lynn, R. Osborn, B. Campbell, J.F. Mitchell, U. Ruett, H.N. Bordallo, A. Wildes, and C.D. Ling: Phys. Rev. Lett., 2002, vol. 89, art. no. 036401.

  20. B.J. Campbell, S.J.L. Billinge, J.W. Lynn, and S.K. Sinha: in From Semiconductors to Proteins, Beyond the Average Structure, S.J.L. Billinge and M.F. Thorpe, eds., Kluwer Academic, New York, NY, 2002, pp. 183–202.

    Google Scholar 

  21. B.J. Campbell, R. Osborn, D.N. Argyriou, L. Vasiliu-Doloc, J.F. Mitchell, S.K. Sinha, U. Ruett, C.D. Ling, Z. Islam, and J.W. Lynn: Phys. Rev. B, 2002, vol. 65, art. no. 014427.

  22. M. Medarde, J.F. Mitchell, J.E. Millburn, S. Short, and J.D. Jorgensen: Phys. Rev. Lett., 1999, vol. 83, pp. 1223–26.

    Article  CAS  ADS  Google Scholar 

  23. S. Shimomura, N. Wakabayashi, H. Kuwahara, and Y. Tokura: Phys. Rev. Lett., 1999, vol. 83, pp. 4389–92.

    Article  CAS  ADS  Google Scholar 

  24. L. Vasiliu-Doloc, S. Rosenkranz, R. Osborn, S.K. Sinha, J.W. Lynn, J. Mesot, O.H. Seeck, G. Preosti, A.J. Fedro, and J.F. Mitchell: Phys. Rev. Lett., 1999, vol. 83, pp. 4393–96.

    Article  CAS  ADS  Google Scholar 

  25. P.H. Dederichs: J. Phys. F: Met. Phys., 1973, vol. 3, pp. 471–96.

    Article  CAS  ADS  Google Scholar 

  26. P.H. Dederichs: Phys. Rev. B, 1971, vol. 4, pp. 1041–50.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author acknowledges Sunil K. Sinha (University of California–San Diego) for introducing him to this problem and for recommending the harmonic lattice as a starting point, and acknowledges Stina N. Anacona, Stephan Rosenkranz, Ray Osborn, and John F. Mitchell (Argonne National Laboratory) for providing single-crystal diffuse scattering data from La1.2Sr1.8Mn2O7. This work was supported by an award from Research Corporation. Experimental work at beamline 1ID-C of the Advanced Photon Source at Argonne National Laboratory was supported by the United States Department of Energy under Contract No. W-31-109-ENG-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branton J. Campbell.

Additional information

This article is based on a presentation given in the symposium entitled “Neutron and X-Ray Studies of Advanced Materials” which occurred February 15–19, 2009 during the TMS Annual Meeting in San Francisco, CA, under the auspices of TMS, TMS Structural Materials Division, TMS/ASM Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, and TMS: Titanium Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, B.J. Quantitative Local Atomic Displacements from Huang Scattering Normalized by Thermal Diffuse Scattering. Metall Mater Trans A 41, 1130–1136 (2010). https://doi.org/10.1007/s11661-009-9893-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9893-2

Keywords

Navigation