Skip to main content
Log in

Cyclic Slip Irreversibilities and the Evolution of Fatigue Damage

  • 2008 Edward DeMille Campbell Memorial Lecture ASM International
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this article, the physical origin of fatigue crack initiation in ductile metals is discussed from a historical perspective. The main focus is to assess those cyclic slip irreversibilities in a microstructural sense that occur not only at the surface but also in the bulk at the dislocation scale and to show how they contribute to surface fatigue damage. The evolution of early fatigue damage, as evidenced experimentally in the last decades, is reviewed. The phenomenon of cyclic strain localization in persistent slip bands (PSBs) and models of the formation of extrusions, intrusions, and microcracks are discussed in detail. The predictions of these models are compared with experimental evidence obtained on mono- and polycrystalline face-centered-cubic (fcc) metals. In addition, examples of the evolution of fatigue damage in selected fcc solid solution alloys and precipitation-hardened alloys and in body-centered-cubic (bcc) metals are analyzed. Where possible, the cyclic slip irreversibilities p, defined as the fraction of plastic shear strain that is microstructurally irreversible, have been estimated quantitatively. Broadly speaking, p has been found to vary over orders of magnitude (0 < p < 1), being almost negligible at low loading amplitudes (high fatigue lives) and substantial at larger loading amplitudes (low fatigue lives).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. W.A.J. Albert: Archive für Mineralogie, Geognosie, Bergbau und Hüttenkunde, 1838, vol. 10, pp. 215–34.

  2. W. Fairbairn: Phil. Trans. R. Soc., 1864, vol. 154, pp. 311–25.

    Article  Google Scholar 

  3. A. Wöhler: Z. Bauwesen, 1870, vol. 20, pp. 73–106.

    Google Scholar 

  4. J. Bauschinger: Mitteilung XV aus dem Mechanisch-technischen Laboratorium der Königlichen Technischen Hochschule in München, 1886, vol. 13, pp. 1–116.

    Google Scholar 

  5. H. Mughrabi: Z. Metallkd., 1986, vol. 77, pp. 703–07.

    Google Scholar 

  6. J.A. Ewing and J.C.W. Humfrey: Phil. Trans. R. Soc., 1903, vol. 200, pp. 241–50.

    Article  ADS  Google Scholar 

  7. L.F. Coffin: Trans. ASME, 1954, vol. 76, pp. 931–50.

    CAS  Google Scholar 

  8. S.S. Manson: National Advisory Committee on Aerospace Technical Note 2933, National Advisory Committee, Cleveland, OH, 1954.

  9. S. Kocanda: Fatigue Failure of Metals, Sijthoff and Noordhoff International Publishers, Alphen aan den Rijn, The Netherlands, 1978.

  10. M. Klesnil and P. Lukáš: Fatigue of Metallic Materials, Materials Science Monographs, 7, Elsevier Scientific Publishers, New York, NY, 1980.

  11. J. Polák: Cyclic Plasticity and Low Cycle Fatigue Life of Metals, Elsevier, Amsterdam, 1991.

    Google Scholar 

  12. S. Suresh: Fatigue of Materials, 2nd ed., Cambridge University Press, Cambridge, UK, 1998.

    Google Scholar 

  13. D.H. Avery and W.A. Backofen: in Fracture of Solids, D.C. Drucker and J.J. Gilman, eds., Interscience Publishers, New York, NY, 1963, pp. 339–82.

    Google Scholar 

  14. C. Laird and D.J. Duquette: in Corrosion Fatigue, O.J. Devereux, A.J. McEvily, and R.W. Staehle, eds., NACE-2, Houston, TX, 1972, pp. 88–115.

    Google Scholar 

  15. P. Lukáš and M. Klesnil: in Corrosion Fatigue, O.J. Devereux, A.J. McEvily, and R.W. Staehle, eds., NACE-2, Houston, TX, 1972, pp. 118–32.

    Google Scholar 

  16. J.C. Grosskreutz and H. Mughrabi: in Constitutive Equations in Plasticity, A.S. Argon, ed., MIT Press, Cambridge, MA, 1975, pp. 251–326.

    Google Scholar 

  17. C. Laird: in Dislocations in Solids, F.R.N. Nabarro, ed., North-Holland Publishing Company, New York, NY, 1983, vol. 6, pp. 57–120.

    Google Scholar 

  18. P. Neumann: in Physical Metallurgy, R.W. Cahn and P. Haasen, eds., Elsevier Science Publishers B.V., New York, NY, 1983, vol. 2, pp. 1553–93.

    Google Scholar 

  19. L.M. Brown: Ashby Symp.: “The Modelling of Material Behavior and its Relation to Design,” J.D. Embury and A.W. Thompson, eds., TMS, Warrendale, PA, 1990, pp. 175–98.

    Google Scholar 

  20. H. Mughrabi: Proc. 5th Int. Conf. on the Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, United Kingdom, 1980, vol. 3, pp. 1615–39.

  21. H. Mughrabi: Dislocations and Properties of Real Materials (Conf. Proc.), The Institute of Metals, London, 1984, Book No. 323, pp. 244–60.

  22. Z.S. Basinski and S.J. Basinski: Prog. Mater. Sci., 1992, vol. 36, pp. 89–148.

    Article  CAS  Google Scholar 

  23. J. Polák: in Comprehensive Structural Integrity, I. Milne, R.O. Ritchie, and B. Karihaloo, eds., Elsevier, Amsterdam, 2003, vol. 4, pp. 1–39.

  24. M.E. Fine: Metall. Trans. A, 1980, vol. 11A, pp. 365–79.

    CAS  Google Scholar 

  25. U. Essmann: Phil. Mag. A, 1982, vol. 45, pp. 171–90.

    Article  ADS  Google Scholar 

  26. H. Mughrabi, R. Wang, K. Differt, and U. Essmann: in Fatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage, ASTM STP 811, J. Lankford, D.L. Davidson, W.L. Morris, and R.P. Wei, eds., ASTM, Philadelphia, PA, 1983, pp. 5–45.

  27. H. Mughrabi: Deformation of Multi-Phase and Particle Containing Materials, Proc. 4th Risø Int. Symp. on Metallurgy and Materials Science, J.B. Bilde-Sørensen, N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt, eds., Risø National Laboratory, Roskilde, 1983, pp. 65–82.

  28. K. Differt, U. Essmann, and H. Mughrabi: Phil. Mag. A, 1986, vol. 54, pp. 237–58.

    Article  ADS  CAS  Google Scholar 

  29. K. Differt, U. Essmann, and H. Mughrabi: Phys. Status Solidi (a), 1987, vol. 104, pp. 95–106.

    Article  CAS  Google Scholar 

  30. H. Mughrabi: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 633–41.

    Article  CAS  Google Scholar 

  31. H. Mughrabi: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 755–64.

    Article  Google Scholar 

  32. H. Mughrabi: Int. J. Fatigue, 2006, vol. 28, pp. 1501–08.

    Article  MATH  CAS  Google Scholar 

  33. H. Mughrabi and S. Stanzl-Tschegg: Proc. 4th Int. Conf. on Very High Cycle Fatigue (VHCF-4), J.E. Allison, J. Wayne-Jones, J.M. Larsen, and R.O. Ritchie, TMS, Warrendale, PA, 2007, pp. 75–82.

  34. A. Weidner, D. Amberger, F. Pyczak, B. Schönbauer, S. Stanzl-Tschegg, and H. Mughrabi: Proc. 17th Eur. Conf. on Fracture (ECF 17), CD: ISBN: 978-80-214-3692-3, 2008.

  35. A. Weidner, D. Amberger, F. Pyczak, B. Schönbauer, S. Stanzl-Tschegg, and H. Mughrabi: expanded version of Ref. 34; Int. J. Fatigue, in press.

  36. S.E. Harvey, P.G. Marsh, and W.W. Gerberich: Acta Metall. Mater., 1994, vol. 42, pp. 3493–3502.

    Article  CAS  Google Scholar 

  37. W.W. Gerberich, S.E. Harvey, D.E. Kramer, and J.W. Hoehn: Acta Mater., 1998, vol. 46, pp. 5007–21.

    Article  CAS  Google Scholar 

  38. D. Khireddine, R. Rahouadj, and M. Clavel: Acta Metall., 1989, vol. 37, pp. 191–201.

    Article  CAS  Google Scholar 

  39. L. Cretegny and A. Saxena: Acta Mater., 2001, vol. 49, pp. 3755–65.

    Article  CAS  Google Scholar 

  40. M. Risbet, X. Feaugas, C. Guillemer-Neel, and M. Clavel: Scripta Mater., 2003, vol. 49, pp. 533–38.

    Article  CAS  Google Scholar 

  41. M. Risbet and X. Feaugas: Eng. Fract. Mech., 2008, vol. 75, pp. 3511–19.

    Article  Google Scholar 

  42. A. Shyam and W.W. Milligan: Acta Mater., 2005, vol. 53, pp. 835–44.

    Article  CAS  Google Scholar 

  43. C.E. Feltner and C. Laird: Acta Metall., 1965, vol. 15, pp. 1621–32 and 1633-–53.

  44. V. Gerold and H.P. Karnthaler: Acta Metall., 1989, vol. 37, pp. 2177–83.

    Article  CAS  Google Scholar 

  45. Z. Wang: Phil. Mag., 2004, vol. 84, pp. 351–79.

    Article  ADS  CAS  Google Scholar 

  46. H.J. Gough: 8th Edgar Marburg Lecture of ASTM, Proc. American Society for Testing and Materials, ASTM, Philadelphia, PA, 1933, vol. 33, Part II, pp. 3–114.

  47. N. Thompson, N.J. Wadsworth, and N. Louat: Phil. Mag., 1956, vol. 1, pp. 113–26.

    Article  ADS  CAS  Google Scholar 

  48. E.E. Laufer and W.N. Roberts: Phil. Mag., 1966, vol. 14, pp. 67–78.

    Article  ADS  Google Scholar 

  49. J.D. Atkinson, L.M. Brown, R. Kwadjo, W.M. Stobbs, A.T. Winter, and P.J. Woods: Proc. 3rd Int. Conf. on the Strength of Metals and Alloys (ICSMA 3), Cambridge, United Kingdom, 1973, pp. 402–06.

    Google Scholar 

  50. A.T. Winter: Phil. Mag., 1974, vol. 30, pp. 719–38.

    Article  ADS  CAS  Google Scholar 

  51. P.J. Woods: Phil. Mag., 1973, vol. 28, pp. 155–91.

    Article  ADS  CAS  Google Scholar 

  52. J.M. Finney and C. Laird: Phil. Mag., 1975, vol. 31, pp. 339–66.

    Article  ADS  CAS  Google Scholar 

  53. H. Mughrabi: Mater. Sci. Eng., 1978, vol. 33, pp. 207–23.

    Article  CAS  Google Scholar 

  54. H. Mughrabi: Proc. 4th Int. Conf. on Continuum Models of Discrete Systems (CMDS-4), O. Brulin and R.K.T. Hsieh, eds., North-Holland Publishing Company, Amsterdam, 1981, pp. 241–57.

  55. H. Mughrabi, K. Herz, and F. Ackermann: Proc. 4th Int. Conf. on the Strength of Metals and Alloys (ICSMA 4), Laboratoire de Physique, E.N.S.M.I.M., Nancy, France, 1976, vol. 3, pp. 1244–48.

  56. H. Mughrabi, F. Ackermann, and K. Herz: Fatigue Mechanisms, Proc. ASTM-NBS-NSF Symp., ASTM ASTP 675, J.T. Fong, ed., ASTM, Philadelphia, PA, 1979, pp. 69–105.

  57. W.A. Wood: Phil. Mag., 1958, vol. 3, pp. 692–99.

    Article  ADS  CAS  Google Scholar 

  58. H. Mughrabi, M. Bayerlein, and R. Wang: Proc. 9th Int. Conf. on the Strength of Metals and Alloys (ICSMA 9), D.G. Brandon, R. Chaim, and A. Rosen, eds., Freund Publishing Company Ltd., London, vol. 2, pp. 879–86.

  59. B.T. Ma and C. Laird: Acta Metall., 1989, vol. 37, pp. 325–36.

    Article  CAS  Google Scholar 

  60. Z.S. Basinski and S.J. Basinski: Acta Metall., 1989, vol. 37, pp. 3263–73.

    Article  CAS  Google Scholar 

  61. J. Polák, J. Man, and K. Obrtlik: Int. J. Fatigue, 2003, vol. 25, pp. 1027–36.

    Article  Google Scholar 

  62. C. Laird: Mater. Sci. Eng., 1976, vol. 22, pp. 231–36.

    Article  CAS  Google Scholar 

  63. H. Mughrabi and R. Wang: Deformation of Polycrystals: Mechanisms and Micro-structures, Proc. 2nd Risø Int. Symp. on Metallurgy and Materials Science, N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt, eds., Risø National Laboratory, Roskilde, Denmark, 1981, pp. 87–98.

  64. S. Stanzl-Tschegg and B. Schönbauer: Proc. 4th Int. Conf. on Very High Cycle Fatigue (VHCF-4), J.E. Allison, J. Wayne-Jones, J.M. Larsen, and R.O. Ritchie, eds., TMS, Warrendale, PA, 2007, pp. 15–22.

  65. D.F. Watt, J.D. Embury, and R.K. Ham: Phil. Mag., 1968, vol. 17, pp. 199–203.

    Article  ADS  CAS  Google Scholar 

  66. S.J. Basinski, Z.S. Basinski, and A. Howie: Phil. Mag., 1969, vol. 19, pp. 889–924.

    Article  ADS  Google Scholar 

  67. Z.S. Basinski, R. Pasqual, and S.J. Basinski: Acta Metall., 1983, vol. 31, pp. 591–602.

    Article  Google Scholar 

  68. J.M. Finney and C. Laird: Mater. Sci. Eng., 1982, vol. 54, pp. 137–42.

    Article  Google Scholar 

  69. M. Hollmann, J. Bretschneider, and C. Holste: Cryst. Res. Technol., 2000, vol. 35, pp. 479–92.

    Article  CAS  Google Scholar 

  70. C. Holste: Phil. Mag., 2004, vol. 84, pp. 299–315.

    Article  ADS  CAS  Google Scholar 

  71. A. Weidner, R. Beyer, C. Blochwitz, C. Holste, A. Schwab, and W. Tirschler: Mater. Sci. Eng. A, 2006, vols. 435–436, pp. 540–46.

    Google Scholar 

  72. A. Weidner, J. Man, W. Tirschler, P. Kapetek, C. Blochwitz, J. Polák, and W. Skrotzki: Mater. Sci. Eng. A, 2008, vol. 492, pp. 118–27.

    Article  Google Scholar 

  73. P.J.E. Forsyth: Proc. R. Soc. A, 1957, vol. 242, pp. 198–202.

    Article  ADS  Google Scholar 

  74. W.A. Wood, S. McK. Cousland, and K.R. Sargant: Acta Metall., 1963, vol. 11, pp. 643–52.

    Article  Google Scholar 

  75. A.N. May: Nature (London), 1960, vol. 185, pp. 303–04.

    Article  ADS  CAS  Google Scholar 

  76. D. Hull: J. Inst. Met., 1957–58, vol. 86, pp. 425–30.

  77. A.H. Cottrell and D. Hull: Proc. R. Soc. A, 1957, vol. 242, pp. 211–13.

    Article  ADS  CAS  Google Scholar 

  78. N.F. Mott: Acta Metall., 1958, vol. 6, pp. 195–97.

    Article  CAS  Google Scholar 

  79. A.J. McEvily, Jr. and E.S. Machlin: in Fracture, B.L. Averbach, D.K. Felbeck, G.T. Hahn, and D.A. Thomas, eds., MIT Press and John Wiley, New York, NY, 1959, pp. 450–73.

    Google Scholar 

  80. N. Thompson: in Fracture, B.L. Averbach, D.K. Felbeck, G.T. Hahn, and D.A. Thomas, eds., MIT Press and John Wiley, New York, NY, 1959, pp. 354–74.

    Google Scholar 

  81. D.F. Watt: Phil. Mag., 1966, vol. 14, pp. 87–92.

    Article  ADS  Google Scholar 

  82. A.J. Kennedy: Processes of Creep and Fatigue in Metals, Oliver and Boyd, Edinbugh and London, 1963, pp. 331–41.

    Google Scholar 

  83. R.C. Boettner and A.J. McEvily: Acta Metall., 1964, vol. 13, pp. 937–46.

    Google Scholar 

  84. L.M. Brown: Met. Sci., 1977, vol. 11, pp. 315–20.

    Article  Google Scholar 

  85. K. Mecke and C. Blochwitz: Cryst. Res. Technol., 1982, vol. 17, pp. 743–58.

    Article  CAS  Google Scholar 

  86. J. Bretschneider, C. Holste, and W. Kleinert: Mater. Sci. Eng. A, 1995, vol. 191, pp. 61–72.

    Article  Google Scholar 

  87. U. Essmann and H. Mughrabi: Phil. Mag. A, 1979, vol. 40, pp. 731–56.

    Article  ADS  CAS  Google Scholar 

  88. U. Essmann, U. Gösele, and H. Mughrabi: Phil. Mag., 1981, vol. 44, pp. 405–26.

    CAS  Google Scholar 

  89. W.A. Backofen: in Fracture, B.L. Averbach, D.K. Felbeck, G.T. Hahn, and D.A. Thomas, eds., MIT Press and John Wiley, New York, NY, 1959, pp. 435–47.

    Google Scholar 

  90. U. Essmann and M. Rapp: Acta Metall., 1973, vol. 21, pp. 1305–17.

    Article  CAS  Google Scholar 

  91. J. Polák: Mater. Sci. Eng., 1987, vol. 92, pp. 71–80.

    Article  Google Scholar 

  92. J.G. Antonopoulos, L.M. Brown, and A.T. Winter: Phil. Mag., 1976, vol. 34, pp. 549–63.

    Article  ADS  CAS  Google Scholar 

  93. I.B. Kwon, M.E. Fine, and J. Weertman: Acta Metall., 1989, vol. 37, pp. 2927–36.

    Article  CAS  Google Scholar 

  94. I.B. Kwon, M.E. Fine, and J. Weertman: Acta Metall., 1989, vol. 37, pp. 2937–46.

    Article  CAS  Google Scholar 

  95. L.M. Brown: Mater. Sci. Eng. A, 2000, vol. 285, pp. 35–42.

    Article  Google Scholar 

  96. J.C. Figueroa and C. Laird: Mater. Sci. Eng., 1983, vol. 60, pp. 45–58.

    Article  Google Scholar 

  97. G. Dörr and C. Blochwitz: Cryst. Res. Technol., 1987, vol. 22, pp. 113–21.

    Article  Google Scholar 

  98. M. Bayerlein and H. Mughrabi: in Short Fatigue Cracks, ESIS 13, K.J. Miller and E.R. de los Rios, eds., Mechanical Engineering Publications, London, 1992, pp. 55–82.

  99. P. Villechaise, L. Sabatier, and J.C. Girard: Mater. Sci. Eng. A, 2002, vol. 323, pp. 377–85.

    Article  Google Scholar 

  100. P. Villechaise: Proc. ATEM’03, Int. Conf. on Advanced Technology in Experimental Mechanics 2003, JSME No. 03-207, The Japan Society of Mechanical Engineers, Tokyo, Sept. 9, 2003, CD-ROM.

  101. J. Man, K. Obrtlik, C. Blochwitz, and J. Polák: Acta Mater., 2002, vol. 50, pp. 3767–80.

    Article  CAS  Google Scholar 

  102. J. Man, K. Obrtlik, and J. Polák: Mater. Sci. Eng. A, 2003, vol. 351, pp. 123–32.

    Article  Google Scholar 

  103. Z.S. Basinski and S.J. Basinski: Proc. 8th Int. Conf. on the Strength of Metals and Alloys (ICSMA 9), P.O. Kettunen, T.K. Lepistö, and M.E. Lehtonen, eds., Pergamon Press, Oxford, United Kingdom, 1988, vol. 1, pp. 13–24.

  104. M.T. Ma and C. Laird: Fatigue Fract. Eng. Mater. Struct., 1986, vol. 9, pp. 109–16.

    Article  Google Scholar 

  105. A. Hunsche and P. Neumann: Acta Metall., 1986, vol. 34, pp. 207–17.

    Article  CAS  Google Scholar 

  106. M. Bayerlein and H. Mughrabi: Acta Metall. Mater., 1991, vol. 39, pp. 1645–50.

    Article  CAS  Google Scholar 

  107. P. Lukaš, M. Klesnil, and J. Krejči: Phys. Status Solidi, 1968, vol. 27, pp. 545–58.

    Article  Google Scholar 

  108. Proc. 4th Int. Conf. on Very High Cycle Fatigue (VHCF-4), J.E. Allison, J. Wayne-Jones, J.M. Larsen, and R.O. Ritchie, eds., TMS, Warrendale, PA, 2007.

  109. S. Stanzl-Tschegg and B. Schönbauer: Proc. 4th Int. Conf. on Very High Cycle Fatigue (VHCF-4), J.E. Allison, J. Wayne-Jones, J.M. Larsen, and R.O. Ritchie, eds., TMS, Warrendale, PA, 2007, pp. 15–22.

  110. S. Stanzl-Tschegg, B. Schönbauer, and C. Laird: Plasticity, Failure and Fatigue in Structural Materials—from Macro to Nano: Proc. Hael Mughrabi Honorary Symp., K.J. Hsia, M. Göken, T. Pollock, P.D. Portella, and N.R. Moody, eds., TMS, Warrendale, PA, 2008, pp. 229–34.

  111. P. Lukáš and M. Klesnil: Phys. Status Solidi, 1970, vol. 37, pp. 833–42.

    Article  Google Scholar 

  112. P. Lukáš and M. Klesnil: Phys. Status Solidi (a), 1970, vol. 5, pp. 247–58; private communication, Max—Planck-Institut für Metallforschung, Stuttgart, Germany, 1982.

  113. J.K. Lee and C. Laird: Phil. Mag. A, vol. 47, pp. 579–97.

  114. D. Steiner and V. Gerold: Mater. Sci. Eng., 1986, vol. 84, pp. 77–88.

    Article  CAS  Google Scholar 

  115. D. Steiner: Doctoral Thesis, University of Stuttgart, Stuttgart, 1982.

  116. M. Clavel and A. Pineau: Mater. Sci. Eng., 1982, vol. 55, pp. 157–71.

    Article  Google Scholar 

  117. P.B. Hirsch: Proc. 1st Int. Conf. on the Strength of Metals and Alloys (ICSMA 1), suppl. to Trans. Jpn. Inst. Met., 1968, vol. 9, pp. XXX–XXXIX.

  118. B. Sesták and A. Seeger: Phys. Status Solidi (b), 1971, pp. 433–44.

  119. H. Mughrabi, K. Herz, and F. Ackermann: Int. J. Fract., 1981, vol. 17, pp. 193–220.

    Article  CAS  Google Scholar 

  120. H. Mughrabi, K. Herz, and X. Stark: Acta Metall., 1976, vol. 24, pp. 659–68.

    Article  CAS  Google Scholar 

  121. H. Mughrabi and Ch. Wüthrich: Phil. Mag., 1976, vol. 33, pp. 963–84.

    Article  ADS  CAS  Google Scholar 

  122. F. Ackermann: Doctoral Thesis, University of Stuttgart, Stuttgart, 1982.

  123. V.M. Goritskii, V.S. Ivanova, L.G. Orlov, and V.F. Terent’yev: Sov. Phys.-Dokl., 1973, vol. 17, pp. 776–79.

    ADS  Google Scholar 

  124. V.F. Terent’yev, I.S. Kogan, and L.G. Orlov: Fiz. Metall. Metalloved., 1975, vol. 40, pp. 199–202.

    Google Scholar 

  125. C. Sommer and H. Mughrabi: Acta Mater., 1998, vol. 46, pp. 1527–36.

    Article  CAS  Google Scholar 

  126. D.V. Wilson and J.K. Tromans: Acta Metall., 1970, vol. 18, pp. 1197–208.

    Article  CAS  Google Scholar 

  127. J.T. McGrath and W.J. Bratina: Czech. J. Phys., 1969, vol. B19, pp. 284–93.

    Article  ADS  Google Scholar 

  128. K. Pohl, P. Mayr, and E. Macherauch: Scripta Metall., 1980, vol. 14, pp. 1167–69.

    Article  Google Scholar 

  129. H.D. Nine: J. Appl. Phys., 1973, vol. 44, pp. 4875–81.

    Article  ADS  CAS  Google Scholar 

  130. R. Neumann: Z. Metallkd., 1975, vol. 66, pp. 26–32.

    CAS  Google Scholar 

  131. H. Mughrabi: Z. Metallkd., 1975, vol. 66, pp. 719–24.

    CAS  Google Scholar 

  132. T. Magnin and J.H. Driver: Mater. Sci. Eng., 1979, vol. 39, pp. 175–85.

    Article  CAS  Google Scholar 

  133. T. Magnin and J.H. Driver: in Low-Cycle Fatigue and Life Prediction, C. Amzallag, B.N. Leis and P. Rabbe, eds., ASTM STP 770, ASTM, Philadelphia, PA, 1982, pp. 212–26.

    Chapter  Google Scholar 

Download references

Acknowledgments

The author is grateful to his colleagues and the doctoral students who contributed over the years to the work reported here. In particular, he thanks his former colleagues, Klaus Differt and Uwe Essmann, Max-Planck-Institut für Metallforschung (Stuttgart), sincerely for many heated and fruitful discussions. The author has also benefited greatly from the very motivating and spirited discussions concerning PSBs with many of his colleagues, most notably with Mick Brown, Campbell Laird, Peter Neumann, Petr Lukáš, and Jaroslav Polák, and he wishes to express his gratitude and respect to these colleagues, friends and rivals of the past.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hael Mughrabi.

Additional information

Hael Mughrabi obtained his primary school education in Germany and subsequently attended different British schools in Jerusalem, Palestine, and in Cairo, Egypt, where he graduated from secondary school at The English School in 1955. He is a German citizen. After a three-year apprenticeship as a mechanic and toolmaker at Bosch GmbH Company in Stuttgart, he entered the Engineering University of Stuttgart to study physics. During his studies, in his doctoral thesis work and in his subsequent occupation as a senior researcher at the Max-Planck-Institute of Metal Research in Stuttgart (1966–1983), he specialized in metal physics and performed mainly research in the fields of crystal defects, mechanical properties, and microstructural characterization. He held a Visiting Professorship at Cornell University in 1978–1979. After receiving offers from three universities, he joined the University of Erlangen–Nürnberg in 1984 as a Professor of Materials Science and Engineering and Head of an Institute of General Materials Properties. In subsequent years, he held positions as Department Head and Dean of the School of Engineering. Since 2002, Hael Mughrabi has been formally retired but is still active in various forms in research and in committee work.

Hael Mughrabi has published almost 300 papers and book chapters and has been editor or co-editor of several books and conference proceedings, mainly in the fields of crystal plasticity, materials characterization, metal fatigue, high-temperature mechanical properties of nickel-base superalloys, and modeling of mechanical behavior. He has been active in the organization and chairing of many international conferences and has frequently been invited as a plenary or keynote speaker. Hael Mughrabi has been a member of TMS for 25 years and of a number of other professional societies, including the German Materials Society (Deutsche Gesellschaft für Materialkunde (DGM)). He has been a member of the Board of Directors of DGM and Chairman of the DGM Awards Committee PKII and has been elected an Honorary Member of DGM. Hael Mughrabi is the holder of an Honorary Doctoral degree from the Ruhr University Bochum and the recipient of several national and international awards, including the highest award of DGM, the Heyn–Denkmünze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mughrabi, H. Cyclic Slip Irreversibilities and the Evolution of Fatigue Damage. Metall Mater Trans A 40, 1257–1279 (2009). https://doi.org/10.1007/s11661-009-9839-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9839-8

Keywords

Navigation