Skip to main content
Log in

The Effects of Grain Size and Strain Amplitude on Persistent Slip Band Formation and Fatigue Crack Initiation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The maximum persistent slip band (PSB) width in cyclic loading is experimentally proven to be a material property in this paper. The dependence of the maximum PSB width on grain size, selected as a microstructural property of the material, is tested and reported. The effect of strain conditions, which conversely is not a material property of copper, is also included in the study. The results demonstrate that the maximum PSB width of annealed copper (grain size = 104.2 µm) is statistically the same within this class of grains, and is statistically larger than that of the stress-relieved copper (grain size = 14.2 µm). In contrast, the PSB width evolution is not sensitive to different strain conditions. These findings advance the fundamental understanding of how persistent slip band formation is influenced by variations in fatigue mechanical stimulus and metallurgical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Choi and C.R. Liu, Wear, 2006 261(5) 485–91.

    Article  CAS  Google Scholar 

  2. Y. Choi, C.R. Liu, Wear 2006, 261(5):492–99.

    Article  CAS  Google Scholar 

  3. Carpinteri A, Vantadori S (2009) International Journal of Fatigue, 31(4), 759–65.

    Article  CAS  Google Scholar 

  4. Carpinteri, Andrea, Filippo Berto, Alberto Campagnolo, Giovanni Fortese, Camilla Ronchei, Daniela Scorza, and Sabrina Vantadori, Theoretical and Applied Fracture Mechanics, 2016, Notch Mechanics 84, pp. 57–63.

    CAS  Google Scholar 

  5. C.R. Liu, Y Choi, International Journal of Mechanical Sciences 2008, 50(2), 117–23.

    Article  Google Scholar 

  6. A. Weidner, R. Beyer, C. Blochwitz, C. Holste, A. Schwab, and W. Tirschler, Materials Science and Engineering: A, 2006, 435–436, pp. 540–46.

    Article  Google Scholar 

  7. C. Erel, G. Po, N. Ghoniem, Philosophical Magazine 2017, 97(32), 2947–70.

    Article  CAS  Google Scholar 

  8. K. S. Chan, J. W. Tian, B. Yang, and P. K. Liaw, Metall and Mat Trans A, 2009, vol. 40, no. 11, pp. 2545–2556.

    Article  CAS  Google Scholar 

  9. A.S. Cheng, C. Laird, Fatigue & Fracture of Engineering Materials & Structures 1981, 4(4), 331–41.

    Article  CAS  Google Scholar 

  10. T. Mura and Y. Nakasone, J. Appl. Mech, 1990, vol. 57, no. 1, pp. 1–6.

    Article  Google Scholar 

  11. M. E. Fine and S. P. Bhat, Materials Science and Engineering: A, 2007, vol. 468–470, pp. 64–69.

    Article  Google Scholar 

  12. Voothaluru R, CR Liu, Fatigue & Fracture of Engineering Materials & Structures, 2014, 37(6), 671–81.

    Article  CAS  Google Scholar 

  13. R. Voothaluru: Purdue University, Thesis PhD, 2014.

  14. Voothaluru R. and C. RichardLiu, Fatigue & Fracture of Engineering Materials & Structures 2013, 36(7), pp. 670–78.

    Article  CAS  Google Scholar 

  15. M. R. Lin, M. E. Fine, T. Mura, Acta Metallurgica, 1986, 34(4), pp. 619–628.

    Article  CAS  Google Scholar 

  16. SP. Bhat, ME. Fine, Materials Science and Engineering A 2001 314(1), 90–96.

    Article  Google Scholar 

  17. K. Tanaka, T. Mura, Journal of Applied Mechanics 1981, 48(1), 97–10.

    Article  Google Scholar 

  18. K. S. Chan, Metall and Mat Trans A, 2003, vol. 34, no. 1, pp. 43–58.

    Article  CAS  Google Scholar 

  19. S.E. Harvey, P.G. Marsh, W.W. Gerberich (1994) Acta Metallurgica Materialia 42(10): 3493–3502.

    Article  CAS  Google Scholar 

  20. J. Man, K. Obrtlík, J. Polák, Philosophical Magazine 2009 89(16): 1295–1336.

    Article  CAS  Google Scholar 

  21. J. Ahmed, S.G. Roberts, A.J. Wilkinson, Philosophical Magazine 2006 86(29): 4965–81.

    Article  CAS  Google Scholar 

  22. M. Zaiser, W. Frank, Applied Physics A 1995, 60(5): 497–503.

    Google Scholar 

  23. S.X. Li, Y. Li, G.Y. Li, J.H. Yang, Z.G. Wang, K. Lu, Philosophical Magazine A, 2002, 82(5), 867–83.

    Article  CAS  Google Scholar 

  24. ASTM International: ASTM E606 / E606M-12, ASTM International, West Conshohocken, PA, 2012, www.astm.org

  25. ASTM International: ASTM E3, ASTM International, West Conshohocken, PA, 2017, www.astm.org

  26. ASTM International: ASTM E407-07, ASTM International, West Conshohocken, PA, 2015, www.astm.org

  27. ASTM International: ASTM E112-13, ASTM International, West Conshohocken, PA, 2013, www.astm.org

  28. A.S. Cheng, and C. Laird, Materials Science and Engineering 1983, 60(2), 177–83.

    Article  CAS  Google Scholar 

  29. S. B. Green, Multivariate Behavioral Research, 1991, 26(3),499-510

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation (CMMI), through Grant No. 1562960 and is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Yu Ou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 15, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, CY., Liu, C.R. The Effects of Grain Size and Strain Amplitude on Persistent Slip Band Formation and Fatigue Crack Initiation. Metall Mater Trans A 50, 5056–5065 (2019). https://doi.org/10.1007/s11661-019-05423-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05423-6

Navigation