Skip to main content
Log in

In-Situ Investigation of Hot Tearing in Aluminum Alloy AA1050 via Acoustic Emission and Cooling Curve Analysis

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hot tearing in the AA1050 alloy was investigated in real time and in situ using acoustic emission (AE) and cooling curve analysis techniques and a ring mold. Activities involving AE have been detected in three zones of the solidification curve. The characteristic signals for hot tearing were an AE energy of over 600 e.u. and an average frequency of ~125 ± 15 kHz in zone II. For hot cracking, the AE energy was over 650 e.u. and the average frequency was ~128 ± 17 kHz in zone III. The hot-tear start temperature ranged from 636 °C to 653 °C; the nonequilibrium solidus T S , from 556 °C to 614 °C; the fraction solid at hot-tear onset from 0.71 to 0.99; and the Clyne–Davis hot-tear susceptibility coefficient (HSC) from 0.25 to 0.81. The HSC correlated inversely with a total energy of solidification cracking (E total) \( {\text{HSC}} \cong 167\left( {E_{\text{total}} } \right)^{ - 0.8}. \) A hot-tear susceptibility factor (HSF) = (pct Fe)·(cooling rate (CR))2 was related to the HSC and T S as HSC = 0.002 HSF + 0.3 and T S  = −0.3 HSF + 617.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Mistras is a trademark of physical Acoustic Corp., Princeton Junction, NJ.

  2. LabVIEW is a trademark of National Instruments, Austin, TX.

  3. Excel is a trademark of Microsoft Corp., Redmond, WA.

  4. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. E.A. Lange and R.W. Heine: AFS Trans., 1952, vol. 60, pp. 182–97.

    Google Scholar 

  2. R.A. Dodd: Foundry Trade J., 1956, Sept., pp. 321–31.

  3. J. Vero: Met. Ind., 1936, vol. 48, pp. 431–94.

    CAS  Google Scholar 

  4. W.I. Pumphrey and P.H. Jennings: J. Inst. Met., 1948, vol. 75, pp. 235–56.

    CAS  Google Scholar 

  5. H.F. Bishop, C.G. Ackerlind, and W.S. Pellini: AFS Trans., 1952, vol. 60, pp. 818–33.

    Google Scholar 

  6. W.S. Pellini: Foundry, 1952, vol. 80, pp. 124–33.

    Google Scholar 

  7. J.C. Borland: Br. Weld. J., 1960, vol. 7 (8), pp. 508–12.

    Google Scholar 

  8. V.N. Saveiko: Russ. Cast. Prod., 1962, vol. 11, pp. 453–56.

    Google Scholar 

  9. J. Zhao and G. Chen: J. Dalian Inst. Technol., 1985, vol. 24 (4), pp. 31–36.

    CAS  MathSciNet  Google Scholar 

  10. R.A. Dodd, W.A. Pollard, and J.W. Meier: AFS Trans., 1957, vol. 65, pp. 100–17.

    Google Scholar 

  11. T.W. Clyne and G.J. Davies: Br. Foundryman, 1975, vol. 68 (9), pp. 238–44.

    Google Scholar 

  12. F. Matsuda, K. Nakata, and Y. Shimokusu: J. Jpn. Weld. Res. Inst., 1983, vol. 12 (1), pp. 81–87.

    CAS  Google Scholar 

  13. C.S. Smith: Trans. AIME, 1949, vol. 185, pp. 762–69.

    Google Scholar 

  14. A.R.E. Singer and S.A. Cottrell: J. Inst. Met., 1947, vol. 73, pp. 33–54.

    Google Scholar 

  15. A.A. Pollock: Metals Handbook, 9th ed., ASM, Materials Park, OH, 1989, vol. 17, pp. 278–94.

  16. T.S.P. Kumar and O. Prabhakan: AFS Trans., 1985, vol. 93, pp. 13–22.

    CAS  Google Scholar 

  17. Suyitno, W.H. Kool, and L. Katgerman: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1537–46.

  18. T.W. Clyne and G.J. Davies: Proc. Conf. Solid. Cast. Met., Metals Society, London, 1979, pp. 275–78.

    Google Scholar 

  19. L. Katgerman: JOM, 1982, vol. 34 (2), pp. 46–49.

    Google Scholar 

  20. U. Feurer: Quality Control of Engineering Alloys and the Role of Materials Science, Delft University of Technology, Delft, The Netherlands, 1978, pp. 131–45.

    Google Scholar 

  21. V. Mathier, J.-M. Drezet, and M. Rappaz: Modell. Simul. Mater. Sci. Eng., 2007, vol. 15, pp. 121–34.

    Article  ADS  CAS  Google Scholar 

  22. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, New York, NY, 1961, p. 197–221.

    Google Scholar 

  23. M. Ohtaki, T. Naguchi, H. Uto, U. Honma, and S. Oya: J. Jpn. Inst. Light Met., 1986, vol. 37, pp. 207–17.

    Google Scholar 

  24. D.G.R. Sharma, O. Prabhakar, H.M. Roshan, and E.G. Ramachandran: Aluminium, 1983, vol. 59, pp. 519–22.

    Google Scholar 

  25. A.L. Purvis, E. Kannatey-Asibu, and R.D. Pehlke: AFS Trans., 1990, vol. 98, pp. 1–7.

    CAS  Google Scholar 

  26. A.L. Purvis, E. Kannatey-Asibu, and R.D. Pehlke, AFS Trans., 1991, vol. 102, pp. 525–30.

    Google Scholar 

  27. H. Tremblay, S. Lessard, and M.O. Pekguleryuz: Research Report, University of Quebec, Chicoutimi, PQ, Canada, 1996.

  28. R.B. Clough: Mater. Eval., 1987, vol. 45, pp. 556–63.

    CAS  Google Scholar 

  29. C.L. Pekeris and H. Lifson: J. Acoustic Soc. Amer., 1957, vol. 29 (11), pp. 1233–38.

    Article  ADS  MathSciNet  Google Scholar 

  30. C.A. Aliravci and M.O. Pekguleryuz: in Light Metals, B.J. Welch, ed., TMS, Warrendale, PA, 1998, pp. 1087–96.

    Google Scholar 

  31. L. Bäckerud, E. Krol, and J. Tamminen: Solidification Characteristics of Aluminium Alloy—Vol. 1: Wrought Alloys, Skanaluminium, Oslo, Sweden, 1986, pp. 63–73.

  32. C.M. Allen, K.A.Q. O’Reilly, B. Cantor, and P.V. Evans: Progr. Mater. Sci., 1998, vol. 43, pp. 89–170.

    Article  CAS  Google Scholar 

  33. H. Kosuge: Keikinzoku, 1984, vol. 34, p. 48.

    Google Scholar 

  34. B. Dutta and M. Rettenmayr: Mater. Sci. Eng., A, vol. 283 (200), pp. 218–24.

  35. W. Khalifa, F.H. Samuel, and J.E. Gruzleski: Metall. Mater. Trans A, 2003, vol. 34A, pp. 807–25.

    ADS  CAS  Google Scholar 

  36. A. Griger and V. Stefaniay: J. Mater. Sci., 1996, vol. 31, pp. 6645–52.

    Article  ADS  CAS  Google Scholar 

  37. A. Aliravci: Doctoral Thesis, McGill University, Montreal, Canada, 2006.

Download references

Acknowledgments

The authors express their sincere gratitude to the Natural Sciences and Engineering Research Council of Canada, Alcan International, Ltd. (currently Rio Tinto Alcan), and the Foundation of the University of Quebec in Chicoutimi (grant no. 269701/410) for providing financial support. H. Tremblay and S. Lessard are gratefully acknowledged for developing the AE probe/wave guard and conducting the initial experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.O. Pekguleryuz.

Additional information

Manuscript submitted April 16, 2008.

Appendix

Appendix

Appendix Summary of AE Test Results

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pekguleryuz, M., Li, X. & Aliravci, C. In-Situ Investigation of Hot Tearing in Aluminum Alloy AA1050 via Acoustic Emission and Cooling Curve Analysis. Metall Mater Trans A 40, 1436–1456 (2009). https://doi.org/10.1007/s11661-009-9806-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9806-4

Keywords

Navigation