Skip to main content
Log in

Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Herein, a hot tearing measured system with external excitation coil and a differential thermal analysis system with applied magnetic field were used to study the effects of low-frequency alternating magnetic field on the solidification behavior and hot tearing susceptibility (HTS) of the AXJ530 alloy under different magnetic field parameters. The hot tearing volume of the castings was measured via paraffin infiltration method. The microstructure of the hot tearing zone of the casting was observed using optical microscopy and scanning electron microscopy, and the phase composition was analyzed using X-ray diffraction and energy depressive spectroscopy. The experimental results show that the solidification interval of AXJ530 alloy was shortened and the dendrite coherency temperature of the alloy decreased with the increase in frequency of alternating magnetic field. Under appropriate magnetic field parameters, the electromagnetic force could enhance the convection in the melt to promote the flow of the residual liquid phase, refine the microstructure, and optimize the feeding channel in the late solidification stage, which reduced the HTS of the alloy. However, when the magnetic field frequency was increased to 15 Hz, the induced current generated excessive Joule heat to the melt. At this time, the thermal action of the magnetic field coarsened the microstructure of the alloy, resulting in an increase in HTS of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. T.M. Pollock, Science 328, 986 (2010)

    CAS  Google Scholar 

  2. B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302, 37 (2001)

    Google Scholar 

  3. A.A. Luo, J. Magnes. Alloys 1, 2 (2013)

    CAS  Google Scholar 

  4. Y. Lou, X. Bai, L. Li, Trans. Nonferrous Met. Soc. China 21, 1247 (2011)

    CAS  Google Scholar 

  5. J. Bai, Y.S. Sun, F. Xue, S. Xue, J. Qiang, W.J. Tao, H.F. Liu, Acta Metall. Sin. (in Chinese) 42, 1267 (2006)

    CAS  Google Scholar 

  6. A.A. Luo, A.K. Sachdev, B.R. Powell, China Foundry 7, 463 (2010)

    CAS  Google Scholar 

  7. G. Cao, S. Kou, Metall. Mater. Trans. A 37, 3647 (2006)

    Google Scholar 

  8. F. Wang, H.K. Dong, Z. Wang, P.L. Mao, Z. Liu, Acta Metall. Sin. (in Chinese) 53, 211 (2017)

    CAS  Google Scholar 

  9. F. Wang, D. Ma, Z. Wang, P.L. Mao, Z. Liu, Acta Metall. Sin. 52, 1115 (2016)

    CAS  Google Scholar 

  10. P. Liu, H. Jiang, Z. Cai, Q. Kang, Y. Zhang, J. Magnes. Alloys 4, 188 (2016)

    Google Scholar 

  11. M.B. Yang, D.Y. Wu, M.D. Hou, F.S. Pan, Trans. Nonferrous Met. Soc. China 25, 721 (2015)

    CAS  Google Scholar 

  12. Z. Liu, S.B. Zhang, P.L. Mao, F. Wang, Mater. Sci. Technol. 30, 1214 (2014)

    CAS  Google Scholar 

  13. Z.Q. Wei, Y. Wang, Z. Liu, Mater. Sci. Technol. 34, 2001 (2018)

    CAS  Google Scholar 

  14. Z. Wei, Z. Liu, Y. Wang, Mater. Res. Express 6, 076570 (2019)

    CAS  Google Scholar 

  15. Y. He, Q. Li, W. Liu, Mater. Lett. 65, 1226 (2011)

    CAS  Google Scholar 

  16. L. Zhang, P.H. Hu, Q. Zhou, W. Zhan, F. Jin, Mater. Lett. 193, 224 (2017)

    CAS  Google Scholar 

  17. J.C. Jie, Q.C. Zou, J.L. Sun, Y. Liu, T. Wang, T.J. Li, Acta Mater. 72, 57 (2014)

    CAS  Google Scholar 

  18. F. Cao, F. Yang, H. Kang, C. Zou, T. Xiao, W. Huang, T. Wang, J. Cryst. Growth 450, 91 (2016)

    CAS  Google Scholar 

  19. B. Wang, Y.S. Yang, M.L. Sun, Trans. Nonferrous Met. Soc. China 18, 536 (2010)

    Google Scholar 

  20. S. Guo, J. Cui, Q. Le, Z. Zhao, Mater. Lett. 59, 1841 (2005)

    CAS  Google Scholar 

  21. F. Tang, A.L. Lu, J.F. Mei, H.Z. Fang, J. Mater. Process. Technol. 74, 255 (1998)

    Google Scholar 

  22. S. Wu, A.L. Lu, H.Y. Zhao, H.Z. Fang, F. Tang, J. Mater. Process. Technol. 328, 133 (2002)

    Google Scholar 

  23. Z. Li, D. Luo, T. Li, Z. Cao, Mater. Mech. Eng. 33, 29 (2009)

    CAS  Google Scholar 

  24. X. Liu, J. Cui, F. Yu, J. Mater. Sci. 39, 2935 (2004)

    CAS  Google Scholar 

  25. Z. Wang, Y.D. Huang, A. Srinivasan, Z. Liu, F. Beckmann, K.U. Kainer, N. Hort, Mater. Des. 47, 90 (2013)

    CAS  Google Scholar 

  26. Z. Wang, Y.D. Huang, A. Srinivasan, Z. Liu, F. Beckmann, K.U. Kainer, N. Hort, J. Mater. Sci. 49, 353 (2014)

    CAS  Google Scholar 

  27. Y. Han, C.Y. Ban, Q.X. Ba, J.W. Cui, J. Northeast. Univ. 27, 991 (2006)

    CAS  Google Scholar 

  28. Z. Wang, Y.Z. Li, F. Wang, Y. Huang, J. Song, P.L. Mao, Z. Liu, Trans. Nonferrous Met. Soc. China 26, 62 (2016)

    Google Scholar 

  29. A. Noeppel, A. Ciobanas, X.D. Wang, K. Zaidat, Metall. Mater. Trans. B 41, 193 (2010)

    Google Scholar 

  30. T.W. Clyne, G.J. Davies, Brit. Found. 74, 65 (1981)

    Google Scholar 

  31. A. Suzuki, N.D. Saddock, J.W. Jones, T.M. Pollock, Acta Mater. 53, 2823 (2005)

    CAS  Google Scholar 

  32. T.W. Clyne, M. Wolf, W. Kurz, Metall. Trans. B 13, 259 (1982)

    Google Scholar 

  33. T. Wang, J. Xu, T. Xiao, H. Xie, J. Li, T. Li, Z. Cao, Phys. Rev. E 81, 042601 (2010)

    Google Scholar 

  34. F. Yang, Z. Chen, F. Cao, K. Fan, H. Kang, W. Huang, Q. Yuan, T. Xiao, T. Fu, T. Wang, J. Mater. Sci. Technol. 10, 70 (2017)

    Google Scholar 

  35. H.K. Dong, F. Wang, Z. Wang, J.K. Liu, Z. Liu, P.L. Mao, Mater. Res. Express 5, 036513 (2018)

    Google Scholar 

  36. H. Li, J. Jie, H. Chen, P. Zhang, T. Wang, T. Li, Mater. Sci. Eng. A 624, 140 (2015)

    CAS  Google Scholar 

  37. B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.F. Zheng, T.F. Xi, Acta Metall. Sin. (Engl. Lett.) 31, 17 (2018)

    Google Scholar 

  38. Z. Wang, Y.Z. Li, F. Wang, J.F. Song, Z. Liu, P.L. Mao, J. Mater. Eng. Perform. 25, 5530 (2016)

    CAS  Google Scholar 

  39. H. Liu, H. Huang, J.P. Sun, C. Wang, J. Bai, A.B. Ma, X.H. Chen, Acta Metall. Sin. (Engl. Lett.) 32, 269 (2019)

    CAS  Google Scholar 

  40. Y. Hou, Z.Q. Zhang, W.D. Xuan, J. Wang, J.B. Yu, Z.M. Ren, Acta Metall. Sin. (Engl. Lett.) 31, 681 (2018)

    CAS  Google Scholar 

  41. Y.G. Tan, F. Liu, A.W. Zhang, D.W. Han, X.Y. Yao, W.W. Zhang, W.R. Sun, Acta Metall. Sin. (Engl. Lett.) 32, 1298 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the LiaoNing Revitalization Talents Program (No. XLYC1807021) and the Innovation Talent Program in Sciences and Technologies for Young and Middle-aged Scientists of Shenyang (No. RC180111) and the Doctoral Scientific Research Foundation of Liaoning Province (No. 51504153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Wang, F., Wang, Z. et al. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field. Acta Metall. Sin. (Engl. Lett.) 33, 1259–1270 (2020). https://doi.org/10.1007/s40195-020-01033-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01033-z

Keywords

Navigation